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Abstract

We study how to combine p-values and e-values, and design multiple testing procedures where
both p-values and e-values are available for every hypothesis. Our results provide a new per-
spective on multiple testing with data-driven weights: while standard weighted multiple testing
methods require the weights to deterministically add up to the number of hypotheses being tested,
we show that this normalization is not required when the weights are e-values that are indepen-
dent of the p-values. Such e-values can be obtained in the meta-analysis setting wherein a primary
dataset is used to compute p-values, and an independent secondary dataset is used to compute
e-values. Going beyond meta-analysis, we showcase settings wherein independent e-values and
p-values can be constructed on a single dataset itself. Our procedures can result in a substantial
increase in power, especially if the non-null hypotheses have e-values much larger than one.

Keywords: weighted multiple testing, false discovery rate, p-values, e-values, normalization.

1 Introduction

The p-value is perhaps the most commonly used inferential device in statistical practice. Tradi-
tional procedures for multiple testing, such as the procedure of Benjamini and Hochberg [1995] for
controlling the false discovery rate, begin with a list of p-values as the input. The e-value is an alterna-
tive inferential tool that encompasses betting scores, likelihood ratios, and stopped supermartingales,
e.g., Shafer [2021], Vovk and Wang [2021], Grünwald et al. [2021], and Howard et al. [2020, 2021].
For example, the “universal inference” e-value has gained popularity, and has recently led to the first
known valid tests for many composite null hypotheses, such as testing mixtures, e.g., testing if the
data comes from a mixture of Gaussians [Wasserman et al., 2020], or testing for shape constraints,
e.g., testing if the data distribution is log-concave [Dunn et al., 2021]. Lists of e-values can also serve
as the input to multiple testing procedures [Wang and Ramdas, 2022, Xu et al., 2021].

In this paper, we design testing procedures for situations in which we have both a p-value and an
e-value for each hypothesis. A first motivation for our proposed methods is the meta-analysis setting
wherein we collect data from two distinct sources. Our contributions to meta-analysis acknowledge
our anticipation that e-values will increasingly find adoption in applications without displacing p-
values. Thus it is natural to develop procedures that can optimally combine the information available
in an e-value and a p-value. What’s more, we argue that our proposed meta-analysis methods are
useful even when the analyst could in principle compute two separate p-values, one on each distinct
dataset. Our methods provide an alternative to other existing meta-analysis methods [Heard and
Rubin-Delanchy, 2018] that can be particularly powerful when one dataset (the primary dataset) is
more informative than the secondary dataset. (We provide theoretical and empirical justification in
Sections 3.3 and 7.3.)
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As a second contribution, our methods provide a new perspective on multiple testing with data-
driven hypothesis weights. Weighted multiple testing procedures provide a flexible and convenient
way of differentially prioritizing hypotheses by assigning a weight to each hypothesis and prioritizing
hypotheses with large weights [Benjamini and Hochberg, 1997, Genovese et al., 2006, Blanchard and
Roquain, 2008, Ramdas et al., 2019]. If the weight assignment is informative and correctly prioritizes
alternatives, then weighted multiple testing procedures can lead to substantial power gains compared
to unweighted procedures. Weighting methods have traditionally come with two requirements: first,
the weights need to be deterministic, that is, they should not depend on the data used to compute
the p-values, and second, they need to average to 1. Intuitively, the first requirement implies that
the weights can only be a priori “guesses,” and the second requirement enforces a constrained size
budget to be split across hypotheses. A nascent literature including e.g., Westfall et al. [2004], Finos
and Salmaso [2007], Roeder and Wasserman [2009], Ignatiadis et al. [2016], Durand [2019], Ignatiadis
and Huber [2021], has dispensed with the first requirement: it is possible to construct data-driven
weights and p-values based on the same dataset. In this paper, we demonstrate (for the first time,
to our knowledge) that it is also simultaneously possible to dispense with the fixed weight budget
requirement.

The key insight for our contributions to both meta-analysis and data-driven hypothesis weighting
is the following: independent e-values can be directly used as weights for p-values in all standard
multiple testing procedures, without needing to normalize them in any way. This can lead to huge
increases in power relative to standard weighted procedures.

2 Multiple testing background

2.1 Terminology and notation

We first describe the basic setting. Let H1, . . . ,HK be K hypotheses, and write K = {1, . . . ,K}.
Let the true (unknown) data-generating probability measure be denoted by P. For each k ∈ K, it is
useful to think of hypothesis Hk as implicitly defining a set of joint probability measures, and Hk is
called a true null hypothesis if P ∈ Hk. A p-value P for a hypothesis H is a random variable that
satisfies Q(P ≤ t) ≤ t for all t ∈ [0, 1] and all Q ∈ H. In other words, a p-value is stochastically
larger than U(0, 1). An e-value E for a hypothesis H is a [0,∞]-valued random variable satisfying
EQ(E) ≤ 1 for all Q ∈ H. Let N ⊆ K be the (unknown to the decision maker) index set of true null
hypotheses, K0 := |N | the number of true null hypotheses, and π0 := K0/K the proportion of true
null hypotheses.

Two settings of testing multiple hypotheses were considered by Wang and Ramdas [2022]. In the
first setting, for each k ∈ K, Pk is a p-value for Hk. In the second setting, for each k ∈ K, Ek is
an e-value for Hk. In this paper we will consider the setting where both Pk and Ek are available for
each Hk. Since we are testing whether P ∈ Hk for each k, we will only use the following (obvious)
condition: if k ∈ N , then P(Pk ≤ t) ≤ t for all t ∈ [0, 1] and EP(Ek) ≤ 1. There are no restrictions
on Pk and Ek if k 6∈ N . We will omit P in the statements (by simply calling them p-values and
e-values) and the expectations. The terms p-values/e-values refer to both the random variables and
their realized values (these should be clear from the context).

Now let D be a testing procedure, that is, a Borel mapping that produces a subset of K representing
the indices of rejected hypotheses based on p-values (we write p-D to denote a procedure D that is
based only on p-values), e-values (e-D), or a combination of both as the input. The rejected hypotheses
by D are called discoveries. We write FD := |D ∩ N| as the number of true null hypotheses that are
rejected (i.e., false discoveries), and RD := |D| as the total number of discoveries. We are interested
in controlling generalized type-I errors that are defined as expectations of the form E{G(FD, RD)},
where G : N≥0 × N≥0 → R≥0 is a fixed mapping.

One choice of particular interest is the choice G(f, r) = f/r, with the convention 0/0 = 0. Then
G(FD, RD) = FD/RD is called the false discovery proportion, which is the ratio of the number
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of false discoveries to that of all claimed discoveries. Benjamini and Hochberg [1995] proposed to
control the false discovery rate, which is the expected value of the false discovery proportion, that is,
FDRD := E(FD/RD). Further important generalized type-I errors are given by the choices G(f, r) = f
and G(f, r) = 1(f ≥ 1). These yield the per-family error rate of a procedure D which is defined as
PFERD := E(FD), as well as the family-wise error rate, defined as FWERD := P(FD ≥ 1). The
family-wise error rate is particularly relevant for testing the global null, and is identical to the false
discovery rate if all hypotheses are true nulls.

We next turn to discuss the dependence structure among p-values. A common, albeit strong
assumption that appears in the literature, e.g., in Liang and Nettleton [2012], is the following:

Definition 2.1 (P-Independence). A vector (Pk)k∈K of p-values satisfies the p-independence property
if: (i) the null p-values (Pk)k∈N are mutually independent, and (ii) the null p-values (Pk)k∈N are
independent of the non-null p-values (Pk)k/∈N .

To relax the above assumption, we rely on the notion of positive regression dependence on a subset
in Finner et al. [2009, Section 4] and Barber and Ramdas [2017] which is slightly weaker than the
original one used in Benjamini and Yekutieli [2001]. A set A ⊆ RK is said to be increasing if x ∈ A
implies y ∈ A for all y ≥ x. The term “increasing” is in the non-strict sense, and inequalities should
be interpreted component-wise when applied to vectors.

Definition 2.2 (Positive regression dependence on a subset). A vector (Pk)k∈K of p-values satisfies
positive regression dependence on a subset if for any null index k ∈ N and increasing set A ⊆ RK ,
the function x 7→ P{(P`)`∈K ∈ A | Pk ≤ x} is increasing on [0, 1].

A caveat of Definition 2.2 is that it enforces certain positive dependence between the nulls and non-
nulls. To address this concern, Su [2018] proposed the following more general notion of dependence.

Definition 2.3 (Positive regression dependence within nulls). A vector (Pk)k∈K of p-values satisfies
positive regression dependence within nulls if the subvector of null p-values, (Pk)k∈N , is positive
regression dependent on a subset.

2.2 Unweighted and weighted multiple testing procedures

We now describe a few canonical procedures that control the generalized type-I errors introduced
above. We start by describing the p-BH and e-BH procedures. These procedures use p-values,
respectively e-values, and seek to control the false discovery rate at the target level α.

Definition 2.4 (p-BH procedure (Benjamini and Hochberg, 1995)). For k ∈ K, let P(k) be the k-th
order statistic of the p-values P1, . . . , PK , from the smallest to the largest. The p-BH procedure rejects
all hypotheses with the smallest k∗p p-values, where

k∗p := max

{
k ∈ K :

KP(k)

k
≤ α

}
, (1)

with the convention max(∅) = 0.

Definition 2.5 (e-BH procedure (Wang and Ramdas, 2022)). For k ∈ K, let E[k] be the k-th order
statistic of the e-values E1, . . . , EK , from the largest to the smallest. The e-BH procedure rejects all
hypotheses with the largest k∗e e-values, where

k∗e := max

{
k ∈ K :

kE[k]

K
≥ 1

α

}
. (2)

An equivalent way to describe the e-BH procedure is to apply the p-BH procedure to (E−11 , . . . , E−1K ).
The p-BH procedure at level α has false discovery rate at most (i) π0α when the p-values sat-

isfy p-independence or positive regression dependence on a subset [Benjamini and Hochberg, 1995,

3



Benjamini and Yekutieli, 2001], (ii) π0α log{e/(π0α)} when the p-values satisfy positive regression

dependence within nulls [Su, 2018], and (iii) `Kπ0α, where `K :=
∑K
k=1 k

−1 ≈ logK, under arbitrary
dependence [Benjamini and Yekutieli, 2001]. As for the e-BH procedure, Wang and Ramdas [2022]
showed a surprising property that the base e-BH procedure controls the false discovery rate at α even
under unknown arbitrary dependence between the e-values.

A procedure closely related to p-BH is the p-Simes procedure. This is not a multiple testing
procedure per se, but instead, it is a test of the global null hypothesis H :=

⋂K
k=1Hk.

Definition 2.6 (p-Simes procedure (Simes, 1986)). The p-Simes procedure rejects the global null⋂K
k=1Hk when the p-BH procedure applied to (Pk)k∈K makes at least one discovery.

The p-Simes procedure has type-I error at most α when the p-values are positive regression de-
pendent within nulls.

We next present the p-Bonferroni procedure to control the per-family error rate and the family-wise
error rate.

Definition 2.7 (p-Bonferroni procedure (Bonferroni, 1935)). Let P1, . . . , PK be the p-values. The
p-Bonferroni procedure rejects all hypotheses with Pk ≤ α/K.

The p-Bonferroni procedure controls the per-family error rate and the family-wise error rate at level
α under arbitrary p-value dependence. The following procedure (p-Hochberg) controls the family-wise
error rate under a stronger dependence assumption, namely, positive regression dependence within
nulls, and is more powerful than p-Bonferroni.

Definition 2.8 (p-Hochberg procedure (Hochberg, 1988)). For k ∈ K, let P(k) be the k-th order
statistic of the p-values P1, . . . , PK , from the smallest to the largest. The p-Hochberg procedure
rejects all hypotheses with the smallest k∗h p-values, where

k∗h := max

{
k ∈ K : P(k) ≤

α

K − k + 1

}
.

In Supplement S2 we also discuss the procedures of Holm [1979] and Hommel [1988].
Many p-value based multiple testing procedures may be applied alongside a vector of weights. Two

examples are weighted p-BH and weighted p-Bonferroni [Genovese et al., 2006].

Definition 2.9 (Weighted p-BH and weighted p-Bonferroni procedures). Let P1, . . . , PK be the p-
values and let (w1, . . . , wK) ∈ [0,∞)K be a pre-specified vector of weights. The weighted p-BH
procedure (resp. p-Bonferroni procedure) is obtained by applying the p-BH (resp. p-Bonferroni
procedure) to (P1/w1, . . . , PK/wK).

For generalized type-I error control, classical thinking imposes the fixed weight budget requirement
that the weights are normalized and average to 1, that is,

∑K
k=1 wk = K. In that case, the weighted p-

BH procedure controls the false discovery rate when the p-values are positive regression dependent on a
subset [Blanchard and Roquain, 2008, Ramdas et al., 2019], and the weighted p-Bonferroni procedure
controls the per-family error rate and the family-wise error rate under arbitrary dependence of the p-
values [Genovese et al., 2006]. Later, we will see if the weights are obtained from e-values independent
of the p-values, then normalization is not needed, and this can improve power substantially.

3 Combining a p-value and an e-value

3.1 Admissible p-value/e-value combiners

One of the main objectives of the paper is to design and understand procedures when both p-values
and e-values are available. For this purpose, we first look at the single-hypothesis setting, in which
case we drop the subscripts and use P for a p-value and E for an e-value.
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We briefly review calibration between a p-value and an e-value as developed previously by Shafer
et al. [2011] and Shafer and Vovk [2019, Chapter 11.5], amongst other sources. Denote by R+ = [0,∞].
First, an e-value E can be converted to a p-value P = (1/E) ∧ 1 (its validity follows from Markov’s
inequality). Further, the function f : e 7→ (1/e) ∧ 1 is the unique admissible e/p calibrator [Vovk and
Wang, 2021, Proposition 2.2].

A p-value P can also be converted to an e-value, but there are many admissible choices. One
example is to set E = P−1/2 − 1. More generally, we speak of p/e calibrators. Small p-values
correspond to large e-values, which represent stronger evidence against a null hypothesis. A p/e

calibrator is a decreasing function h : [0, 1]→ R+ satisfying
∫ 1

0
h(u) du ≤ 1. Then h(P ) is an e-value

for any p-value P . Vovk and Wang [2021, Proposition 2.1] show that the set Cp/e of all admissible
p/e calibrators is

Cp/e =

{
h : [0, 1]→ R+ decreasing & upper semicontinuous | h(0) =∞,

∫
h(u) du = 1

}
.

In the above statements, admissibility of a calibrator (or a combiner below) means that it cannot be
improved strictly, where improvement means obtaining a larger e-value or a smaller p-value.

Combining several p-values or e-values to form a new p-value or e-value is the main topic of Vovk
and Wang [2020, 2021] and Vovk et al. [2022]. For the objective of this paper, we need to combine
a p-value P and an e-value E, first in a single-hypothesis testing problem. We consider four cases.
(i) If P and E are independent, how should we combine them to form an e-value? (ii) If P and E
are independent, how should we combine them to form a p-value? (iii) If P and E are arbitrarily
dependent, how should we combine them to form an e-value? (iv) If P and E are arbitrarily dependent,
how should we combine them to form a p-value?

We use the following terminology, similar to Vovk and Wang [2021]. A function f : [0, 1]×R+ → R+

is called an i-pe/e combiner if f(P,E) is an e-value for any independent p-value P and e-value E,
and (p, e) 7→ f(p, e) is decreasing in p and increasing in e. Similarly, we define i-pe/p, pe/p, and
pe/e combiners, where i indicates independence, and p and e are self-explanatory. If the output is a
p-value, the combiner is increasing in p and decreasing in e.

We provide four natural answers to the above four questions, some relying on an admissible cali-
brator h ∈ Cp/e. (i) Return h(P )E by using the function Πh(p, e) := h(p)e. The convention here is
0 ×∞ = ∞. (ii) Return P/E, capped at 1, by using the function Q(p, e) := (p/e) ∧ 1. (iii) Return
λh(P ) + (1− λ)E by using the function Mλ

h (p, e) := λh(p) + (1− λ)e for some λ ∈ (0, 1). (iv) Return
2 min(P, 1/E), capped at 1, by using the function B(p, e) := {2(p ∧ e−1)} ∧ 1.

The notation chosen for these functions is due to the initials of (i) product (but we avoid P which
is reserved for p-values); (ii) quotient; (iii) mean; (iv) Bonferroni correction.

Πh and Mλ
h depend on h whereas Q and B do not. For the function Mλ

h , it may be convenient
to choose λ = 1/2, so that Mλ

h (P,E) is the arithmetic average of two e-values h(P ) and E. As
shown by Vovk and Wang [2021, Proposition 3.1], the arithmetic average essentially dominates, in a
natural sense, all symmetric e-merging function. In our context, λ = 1/2 has no special role, since
the positions of h(P ) and E are not symmetric.

Theorem 3.1. For h ∈ Cp/e and λ ∈ (0, 1), Πh is an admissible i-pe/e combiner, Q is an admissible
i-pe/p combiner, Mλ

h is an admissible pe/e combiner, B is an admissible pe/p combiner.

The proof can be found in Supplement S1.1. For the remainder of the paper, we pay particular
attention to the i-pe/p combiner Q that forms a p-value based on independent P and E. We use the
term Q-combiner to refer to both the mapping (P,E) 7→ Q(P,E) = (P/E)∧ 1 as well as the resulting
p-value Q(P,E). The Q-combiner typically leads to more powerful procedures compared to the other
combiners and provides the foundation for our insight that e-values can act as unnormalized weights
in multiple testing (see next sections). The Πh i-pe/e combiner is also of interest, and we develop
results for Πh in the context of multiple testing in Supplement S3.
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Remark 3.2. One consequence of Theorem 3.1 is as follows. Consider an e-value E and generate
an independent uniform variable U ∼ U(0, 1). Then, P ′ := Q(U,E) is a valid p-value that satisfies
P{Q(U,E) ≤ f(E)} = 1 and P{Q(U,E) < f(E)} > 0, where f : e 7→ (1/e)∧1 is the unique admissible
e/p calibrator. Hence, f is dominated by a randomized e/p calibrator. Although Q(U,E) may not be
practical in general due to external randomization, it becomes practical when applied as Q(P,E) to
a p-value P (computed from data) independent of E.

3.2 Q-combiner as a general-purpose method for meta-analysis from two
studies

As mentioned above, for the remainder of the paper we consider procedures that build on the Q-
combiner (P,E) 7→ Q(P,E) = (P/E)∧ 1. To start, we argue that the Q-combiner is a useful general-
purpose method for meta-analysis from two independent datasets. The Q-combiner is immediately
applicable when the researcher summarizes the first dataset as a single p-value, and the second dataset
as a single e-value. Such a situation could occur when the second dataset is collected in such a way,
e.g., with optional stopping and continuation, that inference is more natural with e-values; see Ramdas
et al. [2022] for a survey of e-values and the inferential problems they solve. It could also be the case
that one dataset comprises of a large sample size, allowing for asymptotic approximations to compute
p-values, while the second dataset is smaller and may require finite-sample inference methods, e.g.,
universal inference [Wasserman et al., 2020], that lead to e-values.

Our claim, however, is stronger: the Q-combiner is also useful when the above data constraints
are not in place and the researcher can in principle compute both a p-value P ′ and an e-value E on
the second dataset, both of which are independent of the p-value P computed on the first dataset. In
that case, the researcher could apply a p-value combination method based on P and P ′, e.g., Fisher’s
combination PF := 1 − χ4{−2 log(PP ′)}, where χ4 is the chi-square distribution with 4 degrees of
freedom. However, the researcher may still prefer to proceed with the Q-combiner Q(P,E). We
suggest the following rule of thumb.

The Fisher combination is preferable to the Q-combiner under dataset exchangeability: Suppose
that the analyst considers the two datasets as a priori exchangeable. In that case, it may be undesirable
to use an asymmetric combination rule such as Q(P,E), and Fisher’s combination PF is preferable on
conceptual grounds. If the two datasets are also exchangeable in terms of their statistical properties
(i.e., they have similar power), then PF will typically have higher power than Q(P,E).

The Q-combiner is preferable to the Fisher combination for imbalanced datasets: When one dataset
(the “primary” dataset) is substantially more well-powered (larger anticipated signal or sample size)
than the secondary dataset, and the investigator knows which dataset is more well-powered, then the
Q-combiner can often outperform Fisher’s combination test in terms of power. A proviso is that the
p-value is computed on the primary (more well-powered) dataset and the e-value on the secondary
dataset.

In the next section, we provide theoretical and numerical evidence for the rule of thumb put forth
in the preceding paragraph in a stylized example. We also provide further numerical evidence in the
simulations of Section 7.3.

3.3 A stylized example: using two samples for the one-sided z-test via the
Q-combiner

As a stylized example, suppose we have access to two independent samples of iid data points,
X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn), both from a distribution P, where n ≥ m ≥ 1. We seek to
test H0 : P = N(0, 1) against H1 : P = N(δ, 1), where δ > 0 is known. The optimal p-value based on X
is PX := 1− Φ(TX), where Φ is the standard normal distribution function and TX :=

∑m
i=1Xi/

√
m.

Analogously we may compute p-values PY based on Y , as well as PZ , where Z = (X,Y ) is the full
dataset. The optimal e-value EX based on X is the likelihood ratio of N(δ, 1)m over N(0, 1)m.
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Figure 1: Simulation study for a meta-analysis combining two samples: We compare the likelihood
ratio test, the Q-combiner, and the Fisher combination test, plotting power against signal strength δ.
The panels correspond to different choices of the two sample sizes m and n. The Q-combiner is visibly
more powerful on the left (matching the likelihood ratio), and Fisher’s combination is marginally
better on the right.

By the Neyman–Pearson lemma, the p-value PZ leads to the most powerful test. We seek to
compare PZ against the Q-combiner PE := Q(PY , EX) by considering the hypothesis tests that reject
H0 when PZ ≤ α, or when PE ≤ α, for α > 0. We assume m = bθ2nc for some θ ∈ (0, 1] which
measures the relative size of the two datasets.

In Supplement S4, we derive Pitman’s asymptotic relative efficiency (Van der Vaart, 1998, Section
14.3; DasGupta, 2008, Section 22.1) between the two methods, which is the asymptotic ratio of the
required sample size from PZ to reach a fixed power, to that from PE, as δ ↓ 0. We prove that the
asymptotic relative efficiency converges to 1 in two different settings: as α ↓ 0, that is, when the type-I
error is very stringent, and as θ ↓ 0, that is, when Y is substantially more well-powered than X. Our
results can also be used to numerically compute the asymptotic relative efficiency for any choice of
θ, α, and desired power, e.g., the asymptotic relative efficiency is (up to numerical rounding) equal to
0.989 when θ = 0.5, α = 0.05, and we seek a power of 50%.

We also conduct a small simulation study comparing (i) PZ , (ii) PE, and, (iii) the Fisher p-value
PF := 1−χ4{−2 log(PY PX)}. Simulation results are reported in Fig. 1 based on the average of 10,000
runs. We take α = 0.05, m+n = 100 and let the ratio m/n and δ > 0 vary. We observe the following:
if m/n is small (first two panels), meaning that X is less informative than Y , then the Q-combiner has
almost the same power as the full likelihood ratio method, and both outperform the Fisher method.
When m = n (third panel), the Fisher test has more power than the Q-combiner, and both have
(slightly) less power than the likelihood ratio test.

4 Using e-values as weights in multiple testing with p-values

4.1 General remarks

In this section, we move back to multiple testing by considering the setting where each hypothesis
is associated with a p-value and an e-value. The generalized type-I error of testing procedures depends
on the dependence amongst the e-values, the dependence amongst the p-values, and the dependence
between the p-values and e-values. Throughout this section we make the following assumption:

Assumption 4.1. Pk is independent of Ek for all k ∈ N .
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Given any procedure p-D that is based on p-values, we can extend it to an e-weighted procedure
that we call ep-D and which generalizes the concept of weighting for multiple testing.

Definition 4.2 (e-weighted p-value procedure (ep-D)). Let p-D be a multiple testing procedure based
on p-values. Given p-values (Pk)k∈K and e-values (Ek)k∈K, we define the e-weighted p-value procedure
ep-D which proceeds as follows: for k ∈ K, compute the Q-combiner P ∗k := Q(Pk, Ek) = (Pk/Ek)∧ 1,
and then supply (P ∗k )k∈K to p-D.

Concretely, we define the (i) ep-BH, (ii) ep-Simes, (iii) ep-Bonferroni, resp. (iv) ep-Hochberg
procedure by plugging in the (i) p-BH (Definition 2.4), (ii) p-Simes (Definition 2.6), (iii) p-Bonferroni
(Definition 2.7), resp. (iv) p-Hochberg (Definition 2.8) procedure into Definition 4.2.

In view of Definition 2.9, ep-BH and ep-Bonferroni may be interpreted in two ways: (i) they are
p-value based procedures applied to the p-value vector (P ∗k )k∈K, and (ii) they are weighted p-value
based procedures with p-value vector (Pk)k∈K and weight vector (Ek)k∈K. Both perspectives are
useful in deriving guarantees on the control of generalized type-I error rates.

4.2 E-weighted p-value procedures as p-value procedures

We first present a general result under Assumption 4.1. Recall the generalized type-1 error mapping
G from Section 2.1 whose expectation captures error metrics like the false discovery rate, per-family
error rate, and the family-wise error rate, amongst others.

Theorem 4.3. Let p-D be a p-value procedure such that E{G(Fp-D, Rp-D)} ≤ α′ for any p-value vector
that may be arbitrarily dependent, where α′ > 0. Suppose further that Assumption 4.1 holds. Then,
the ep-D procedure applied to (Pk)k∈K, (Ek)k∈K also satisfies E{G(Fep-D, Rep-D)} ≤ α′. In particular,

(i) the ep-BH procedure has false discovery rate at most `Kπ0α, where `K :=
∑K
k=1 k

−1, and (ii) the
ep-Bonferroni procedure has per-family error rate and family-wise error rate at most α.

Proof. By Theorem 3.1, P ∗k is a valid p-value under Assumption 4.1 for all k ∈ N . Hence (P ∗k )k∈K is
a valid p-value vector (that may be arbitrarily dependent).

The above argument can easily be generalized. For example, if Assumption 4.1 holds, and (P ∗k )k∈K
satisfies positive regression dependence on a subset, then ep-BH has false discovery rate at most π0α.
Analogously, if Assumption 4.1 holds and (P ∗k )k∈K is positive regression dependent within nulls, then
ep-Hochberg has family-wise error rate at most α and so forth. The assumption that (P ∗k )k∈K is
positive regression dependent on a subset (or within nulls), however, may be difficult to interpret.
Thus we prefer to directly impose assumptions on (Pk)k∈K, (Ek)k∈K, as well as the cross-dependence
between (Pk)k∈K and (Ek)k∈K.

We provide an example of the general approach by considering the following independence as-
sumption. In the next subsection, we provide more elaborate results by turning to the perspective
that ep-D procedures are weighted procedures.

Assumption 4.4. (i) The null (p-value, e-value) pairs {(Pk, Ek)}k∈N are mutually independent, and
(ii) {(Pk, Ek)}k∈N is independent of {(Pk, Ek)}k/∈N .

Theorem 4.5. Let p-D be a p-value procedure such that E{G(Fp-D, Rp-D)} ≤ α′ for any p-value vector
that satisfies p-independence (Definition 2.1), where α′ > 0. Suppose further that Assumptions 4.1 and
4.4 hold. Then, the ep-D procedure applied to (Pk)k∈K, (Ek)k∈K also satisfies E{G(Fep-D, Rep-D)} ≤
α′. In particular, (i) the ep-BH procedure has false discovery rate at most π0α, (ii) the ep-Hochberg
procedure has family-wise error rate at most α.

Proof. Assumptions 4.1 and 4.4 imply that (P ∗k )k∈K satisfies p-independence (Definition 2.1).
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4.3 E-weighted p-value procedures as weighted p-value procedures

We now turn to the second perspective of e-weighted procedures: we interpret the e-values as
weights for the p-values. Intuitively, if Ek > 1, then there is evidence against Hk being a null, and
we have Pk/Ek < Pk (assuming Pk 6= 0), that is, the weight strengthens the signal of Pk. Conversely,
if Ek < 1, then there is no evidence against Hk being a null, and we have Pk/Ek > Pk. The
above interpretation of e-values as weights is quite natural, and the perspective is useful in deriving
guarantees for, e.g., ep-BH, that may be challenging to prove otherwise: below we prove that ep-BH
controls the false discovery rate under the assumption that (Pk)k∈K is positive regression dependent
on a subset along with the following strengthening of Assumption 4.1.

Assumption 4.6. (Pk)k∈K is independent of (Ek)k∈K.

Positive regression dependence on a subset of (Pk)k∈K, together with Assumption 4.6, does not
imply positive regression dependence on a subset of (P ∗k )k∈K, and hence some arguments are needed
to establish control of the false discovery rate by ep-BH. The following result integrates over the
randomness in the weights (e-values). In contrast, weighted p-BH with normalized weights controls
the false discovery rate conditionally on all the weights.

Theorem 4.7. Suppose that Assumption 4.6 holds and that (Pk)k∈K is positive regression dependent
on a subset (Definition 2.2). Then, the ep-BH procedure has false discovery rate at most π0α.

Proof. Let ep-D be the ep-BH procedure at level α. Since (Ek)k∈K is independent of (Pk)k∈K, con-
ditional on (Ek)k∈K, the ep-BH procedure becomes a weighted p-BH procedure with weight vector
(Ek)k∈K applied to the p-values (Pk)k∈K that are positive regression dependent on a subset. Using
well-known existing results on the false discovery rate of the weighted p-BH procedure (e.g., Ramdas
et al., 2019, Theorem 1), we get

E
{
Fep-D

Rep-D

∣∣∣ (Ek)k∈K

}
≤ 1

K

∑
k∈N

Ekα.

Hence, by iterated expectation, FDRep-D ≤ E(
∑
k∈N Ekα/K) ≤ π0α.

Perhaps surprisingly, the above result does not require any assumption whatsoever about the
dependence within (Ek)k∈K. In the case of p-values that are positive regression dependent within
nulls, it is natural to posit the following dependence assumption on (Pk)k∈K and (Ek)k∈K (that is
intermediate in strength compared to Assumptions 4.1 and 4.6).

Assumption 4.8. (Pk)k∈N is independent of (Ek)k∈N .

Theorem 4.9. Suppose that Assumption 4.8 holds, and that (Pk)k∈K is positive regression dependent
within nulls (Definition 2.3). Then, (i) the ep-Simes procedure has type-I error of at most α under
the global null hypothesis, (ii) the ep-BH procedure has false discovery rate at most π0α log{e/(π0α)},
and (iii) the ep-Hochberg procedure has family-wise error rate at most α.

Proof. The result for ep-Simes follows from Theorem 4.7: under the global null hypothesis, it holds
that N = K, and so the assumptions of Theorems 4.7 and 4.9 are identical. Hence by definition of
the Simes procedure (and noting that FWER = FDR under the global null):

P
(

ep-Simes rejects
⋂K
k=1Hk

)
= P(ep-BH rejects at least one of Hk) = FDRep-BH ≤ α.

The result on ep-BH follows from the false discovery rate linking theorem [Su, 2018, Theorem 1] which
converts bounds on the false discovery rate of p-BH applied on the null p-values only to a bound on
the false discovery rate of p-BH applied to all p-values. The false discovery rate linking theorem is
also applicable to ep-BH once we interpret it as p-BH acting on (P ∗k )k∈K. Hence it suffices to bound
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the false discovery rate of ep-BH applied on the null hypotheses only, and such a bound follows from
Theorem 4.7.

The result for ep-Hochberg follows from the result for ep-Simes, since the p-Hochberg proce-
dure [Hochberg, 1988] is a shortcut for closed testing [Marcus et al., 1976] based on p-Simes (and so
ep-Hochberg is a shortcut for closed testing based on ep-Simes).

4.4 Null proportion adaptivity: the e-weighted Storey procedure (ep-
Storey)

As we explained above, weighted multiple testing procedures typically require normalized weights,
that is, weights that satisfy

∑K
k=1 wk = K. This constraint represents a fixed weight budget to be

allocated across hypotheses. It is possible, however, to increase the budget in a data-driven way by
adapting to the proportion of null hypotheses. For example, in the case of uniform weights (i.e., for
unweighted multiple testing), Storey, Taylor, and Siegmund [2004] proposed to estimate the proportion
of null hypotheses π0 = K0/K by:

π̂0 :=
1 +

∑K
k=1 1(Pk > τ)

K(1− τ)
, (3)

for fixed τ ∈ (0, 1), and then to apply the p-BH procedure with p-values Pk and weights wk := 1(Pk ≤
τ)/π̂0. Since hypotheses with Pk > τ would be unlikely to be rejected, the procedure of Storey et al.
[2004] increases the weight budget (when π̂0 < 1) from K to K/π̂0.

The case of null-proportion adaptive procedures was addressed by Habiger [2017] and Ramdas
et al. [2019] for arbitrary normalized weights, and by Li and Barber [2019] for a specific choice of
data-driven weights. Here we propose ep-Storey, a null proportion adaptive version of ep-BH, which
proceeds as follows: compute π̂0 as in (3) with p-values Pk and then apply the weighted p-BH procedure
(Definition 2.9) at level α with p-values Pk and weights wk := 1(Pk ≤ τ)Ek/π̂0.

Theorem 4.10. Suppose that Assumption 4.6 holds, and that (Pk)k∈K satisfies p-independence (Def-
inition 2.1). Then the ep-Storey procedure has false discovery rate at most α.

The proof (Supplement S1.2) proceeds as the proof of Theorem 4.7 by arguing conditionally on
(Ek)k∈K. In defining ep-Storey, we abused terminology: ep-Storey is different than the procedure
implied by Definition 4.2, that is, applying Storey’s procedure to (P ∗k )k∈K in which case one would
estimate π0 by π̂′0 = {1 +

∑K
k=1 1(Pk > τEk)}/{K(1− τ)} instead of (3) and then weight hypotheses

by 1(Pk ≤ τEk)/π̂′0. The latter procedure controls the false discovery rate under Assumptions 4.1
and 4.4 (by Theorem 4.5), but not necessarily under the assumptions of Theorem 4.10.

One shortcoming of ep-Storey occurs when some e-values are potentially very strong, say 1/Ek ≈
α/K, but the corresponding p-values satisfy Pk > τ . Such hypotheses would be discarded by ep-
Storey, but would be rejected by e.g., e-BH that only uses the e-values. Hence it may be advisable to
use larger values of τ for ep-Storey.

Remark 4.11. There is a further subtle benefit of ep-BH compared to weighted p-BH with normalized
weights related to null proportion adaptivity. In many applications, the proportion of null hypotheses
π0 is close to 1. In such cases, it may not be worthwhile to apply ep-Storey compared to ep-BH, since
their power will be comparable (α ≈ π0α) and the assumptions on the dependence of (Pk)k∈K are
stronger in Theorem 4.10 compared to Theorem 4.7. For weighted p-BH with normalized weights,
however, the false discovery rate is controlled at α

∑
k∈N wk/

∑K
k=1 wk [Ramdas et al., 2019]. Hence,

for an informative weight assignment that prioritizes alternative hypotheses over null hypotheses, the
gains from null proportion adaptivity can be substantial even when π0 ≈ 1. In other words: the more
informative the weights are, the more conservative normalized weighted p-BH becomes in terms of
the false discovery rate. ep-BH does not pay such a penalty for informative e-value weights as long as
E(Ek) = 1 for all k ∈ N .
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4.5 Robustness to misspecification

So far, we have presented all results under the assumption that we have access to e-values with
the property that E(Ek) ≤ 1 for all k ∈ N and p-values with the property P(Pk ≤ t) ≤ t for all
t ∈ [0, 1] and all k ∈ N . Nevertheless, the guarantees are often robust to some deviations from these
assumptions. We consider the following possible deviations.

Inflated (anticonservative) e-values or p-values: Suppose the e-values satisfy E(Ek) ≤ 1 + η for
some η > 0 and all k ∈ N or alternatively that the p-values satisfy P(Pk ≤ t) ≤ (1 + η)t for all
t ∈ [0, 1] and all k ∈ N . Then the generalized type-I error bounds for ep-BH, ep-Bonferroni, ep-
Hochberg, and ep-Simes stated above hold with α replaced by (1 + η)α. For example, ep-BH controls
the false discovery rate at level (1 + η)`Kπ0α in the setting of Theorem 4.3 and at level (1 + η)π0α in
the setting of Theorem 4.7. (The proofs are simple and thus omitted.)

Compound e-values or p-values: Instead of E(Ek) ≤ 1 holding for all k ∈ N , suppose this property
holds on average over all k [Wang and Ramdas, 2022, Ren and Barber, 2022], that is,

1

K0

∑
k∈N

E(Ek) ≤ 1. (4)

Some results extend to this case as well. For example, under (4), ep-Bonferroni controls the family-
wise error rate at α in the setting of Theorem 4.3, and ep-BH controls the false discovery rate at α
in the setting of Theorem 4.7. Analogously to (4), one may consider compound p-values that satisfy∑
k∈N P(Pk ≤ t) ≤ K0t for all t ∈ [0, 1]. See Armstrong [2022] for robustness guarantees in that

setting.

5 Data-driven weighting with compound e-values

5.1 Simultaneous one-sample t-tests and means of squares as e-values

We now turn to our second contribution: we demonstrate the feasibility and practicality of weighted
multiple testing procedures with unnormalized data-driven weights. For simplicity, we restrict atten-
tion to ep-BH and ep-Bonferroni. Our agenda will be to construct Ek such that the following properties
hold approximately: Ek is independent of Pk for k ∈ N and (4) holds.

Throughout this section we study the problem of conducting simultaneous one-sample t-tests
based on n observations per hypothesis (and we defer extensions to simultaneous two-sample t-tests
to Supplement S5). To be concrete, for the k-th hypothesis we observe

Ykj ∼ N(µk, σ
2
k), for j = 1, . . . , n, µk ∈ R, σk > 0, (5)

and we assume that all Ykj , 1 ≤ k ≤ K, 1 ≤ j ≤ n are mutually independent and n ≥ 2. We seek to
test Hk : µk = 0 and to do so, we compute p-values based on the standard t-test,

µ̂k :=
1

n

n∑
j=1

Ykj , σ̂2
k :=

1

n− 1

n∑
j=1

(Ykj − µ̂k)2, Tk :=

√
nµ̂k
σ̂k

, (6)

and Pk := 2{1 − Ft,n−1(|Tk|)}, where Ft,n−1 is the t-distribution with n − 1 degrees of freedom.
Multiple testing with simultaneous t-tests has been studied by several authors including Smyth [2004],
Westfall et al. [2004], Finos and Salmaso [2007], Bourgon et al. [2010], Du and Zhang [2014], Lu and
Stephens [2016], Guo and Romano [2017], Ignatiadis and Huber [2021], Hoff [2022], Ignatiadis and
Sen [2023]. Albeit stylized, this problem has provided several new insights and has called attention
to differences between single hypothesis testing and multiple testing. We contribute to the literature
by demonstrating how unnormalized data-driven weights alongside (Pk)k∈K can be constructed based
on (Ykj)k,j while retaining type-I error control guarantees.
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The key observation permitting the construction of data-driven weights is the following. Let
S2
k :=

∑n
j=1 Y

2
kj/n be the mean of squares of the observations for the k-th hypothesis. When k ∈ N ,

that is, when µk = 0, then S2
k is complete and sufficient for σ2

k. On the other hand, the t-statistic Tk
is ancillary for σ2

k. Hence, by Basu’s theorem [Basu, 1955], it holds that Tk (and so Pk) is independent
of S2

k. To summarize:
S2
k is independent of Pk for k ∈ N . (7)

Motivated by the above, Westfall et al. [2004] considered the weights

wk := KS2
k

/ K∑
`=1

S2
` , (8)

and proved that weighted p-Bonferroni with p-values Pk and weights wk controls the family-wise error
rate. Similarly, weighted p-BH with the above p-values and weights controls the false discovery rate.

The perspective on e-values as weights in multiple testing along with the robustness guaran-
tee for (4) suggests that instead of wk we could have used E∗k := K0S

2
k/
∑
`∈N σ

2
` , which satisfy∑

k∈N E(E∗k) = K0 (since E(S2
k) = σ2

k for k ∈ N ). As explained in Section 4.5, ep-Bonferroni, resp.
ep-BH with Pk and E∗k control the family-wise error rate, resp. false discovery rate.

A caveat to the above argument is that the compound e-values E∗k are not computable as they
depend on the unknown data generating mechanism through

∑
`∈N σ

2
` . Our proposal then is to

conservatively estimate
∑
`∈N σ

2
` by

∑K
`=1 σ̂

2
` , and to construct feasible approximations to E∗k :

Ek := KS2
k

/ K∑
`=1

σ̂2
` . (9)

Since E(S2
k) = µ2

k + σ2
k, we see that by using Ek (9) in place of wk (8) we increase the expected

total weight budget by approximately the factor
∑K
k=1(µ2

k +σ2
k)/
∑K
k=1 σ

2
k. Our proposal furthermore

controls type-I error, as the following theorem demonstrates.

Theorem 5.1. In the above setting, suppose there exist η, δ ∈ [0, 1) such that P(Aδ) ≤ η, where

Aδ is the “bad” event {
∑K
`=1 σ̂

2
` < (1 − δ)

∑
`∈N σ

2
`}. Then, (i) the ep-Bonferroni procedure with

t-test p-values Pk and (approximate compound) e-values Ek (9) controls the family-wise error rate at
α′ := α/(1− δ) + η, and (ii) the ep-BH procedure with Pk and Ek controls the false discovery rate at
α′.

Proof. We prove the result for ep-Bonferroni to highlight the core ideas and defer the proof for ep-BH
to Supplement S1.3. Applying the union bound twice, we see that, FWERD = P(FD ≥ 1) ≤ P({FD ≥
1} ∩ Acδ) + η ≤

∑
k∈N P({Pk ≤ αEk/K} ∩ Acδ) + η. Let Ẽk := KS2

k/{(1 − δ)
∑
`∈N σ

2
`}, then on the

complement of the event Aδ it holds that Ek ≤ Ẽk. Hence we may bound P({Pk ≤ αEk/K}∩Acδ) for

null k by P(Pk ≤ αẼk/K) and,

P

(
Pk ≤

αẼk
K

)
(∗)
= E

[
P
{
Pk ≤

αS2
k

(1− δ)
∑
`∈N σ

2
`

∣∣∣∣S2
k

}]
(∗∗)
≤ E

{
αS2

k

(1− δ)
∑
`∈N σ

2
`

}
.

In (∗) we applied iterated expectation, and in (∗∗) we used the independence in (7). To conclude, we
recall that E(S2

k) = σ2
k for null k, and then we sum the above inequalities over all k ∈ N .

One may seek to recalibrate α via Theorem 5.1 to achieve finite-sample error control at the desired
level. We do not advocate for such recalibration, since the type-I error inflation due to δ, η will
typically be negligible, as we demonstrate next using standard concentration arguments [Boucheron
et al., 2013, Chapter 2.4]. We postpone proof details to Supplement S1.4.
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Proposition 5.2. In Theorem 5.1, we may choose δ = δ(η) for any η ∈ (0, 1) with δ(η) < 1, where
δ(η) := 2{log(1/η)

∑
`∈N σ

4
`/(n − 1)}1/2/

∑
`∈N σ

2
` . If σk ∈ [

¯
σ, σ̄] for all k ∈ N , where 0 <

¯
σ ≤ σ̄,

then δ(η) ≤ 2[log(1/η)σ̄4/{(n− 1)K0
¯
σ4}]1/2, i.e., δ(η) = O{

√
log(1/η)/

√
(nK0)}.

As an example, suppose we apply ep-BH at target level α = 0.1 and that model (5) holds with
σ2
k = 1 for all k ∈ K, π0 = 0.95, n = 10, and K = 20, 000. Then we can choose η = 0.001, δ < 0.0128,

so that the false discovery rate will be provably controlled at level at most 0.1023.

5.2 On the choice of weighting function

Above we explained our results for the compound e-values Ek ∝ S2
k. This choice renders the results

most transparent. In the case of normalized weighting, instead of taking wk ∝ S2
k, we could have

proceeded with wk ∝ ψ(S2
k) for a fixed function ψ : R≥0 → R≥0. Due to normalization, any (fixed)

choice of ψ(·) leads to type-I error control, but the power of the resulting procedures depends on ψ(·).
For example, Westfall et al. [2004] also considered the choice ψ(s) = sν for fixed ν > 0, while Bourgon
et al. [2010], Guo and Romano [2017] considered ψ(s) = 1(s > c) for fixed c > 0.Ignatiadis et al.
[2016], Ignatiadis and Huber [2021] proposed independent hypothesis weighting (IHW) which (in the
present setting) uses normalized weights wk ∝ ψ̂−k(S2

k), where for any k ∈ K, ψ̂−k(·) is learned based
on (S2

` )`∈K as well as a subset of the p-values that excludes Pk. This subset is based on a cross-fold
construction (“cross-weighting”) which avoids overfitting and ensures type-I error control.

In the case of unnormalized weights, as developed in this work, it is also possible to consider
Ek ∝ ψ(S2

k) for more general choices of ψ(·). In Supplement S6, we motivate the choice

Ek := K

6∑
d=0

ndΓ(n/2)

4dd!Γ(n/2 + d)
(nS2

k)d

/
K∑
`=1

6∑
d=0

ndΓ{(n− 1)/2}
4dd!Γ{(n− 1)/2 + d}

{(n− 1)σ̂2
`}d. (10)

By using (10) instead of (9), it is possible to increase the weight budget even further, i.e.,
∑K
k=1Ek

can be substantially larger than K. In the simulations of Section 7.2, (10) is powerful, however, we
leave an investigation of the optimal (potentially data-driven) choice of e-value weights to future work.

5.3 A hierarchy of assumptions on side-information

Our discussion so far indicates a hierarchy of potential assumptions on side-information in multiple
testing. Side-information in multiple testing refers to additional contextual knowledge, often in the
form of covariates, that goes beyond the p-values Pk and can enhance the power of multiple testing
procedures. (i) A practical and widely used assumption [Ignatiadis et al., 2016, Lei and Fithian, 2018,
Li and Barber, 2019, Ignatiadis and Huber, 2021] is that the side-information (in this section, S2

k) is
independent of the p-value Pk for null k (this holds by (7) in the present setting). (ii) In other cases,
the side-information can be used to compute a second p-value P ′k that is independent of Pk. This is
true in the meta-analysis setting, however, it is also possible in the setting of this section. Du and
Zhang [2014, Section 6.4] posit model (5) with σ2

k = 1 for all k, and assume that the common value of
all σ2

k is known to the analyst. They let Pk be the t-test p-value as in (6) and P ′k := 1−χn(nS2
k), where

χn is the chi-square distribution with n degrees of freedom. Then, P ′k is a p-value that is independent
of Pk for k ∈ N . (iii) Our methodological developments (e.g., Theorem 5.1) indicate that there are
assumptions for side-information intermediate in strength between (i) and (ii). In addition to (i), it
suffices to control certain moments of the side-information averaged over all null coordinates (4).

One of the key messages of this paper is that it can be valuable to pursue (iii) through compound
e-values as weights. In the model of this section, existing methods for multiple testing with side-
information, e.g., independent hypothesis weighting, forfeit potential power gains by ignoring the
distributional knowledge available for S2

k and instead using normalized weights (the upshot being that
independent hypothesis weighting is applicable to more general forms of side-information). On the
other hand, the assumption in Du and Zhang [2014, Section 6.4] that σ2

k = 1 for all k (and that their
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Figure 2: Differential gene expression analysis: We plot histograms of A) RNA-Seq p-values, B)
microarray e-values (capped at 5), and C) Q-combiner p-values Q(Pk, Ek) = (Pk/Ek) ∧ 1 overlaid
with the histogram of p-values from panel A). The smallest e-value (panel B) is equal to 0.46. There
is an enrichment of Q(Pk, Ek) compared to Pk in the bin closest to 0 (panel C).

common value is known to the analyst) is strong: if we are willing to impose it, then it would be
advisable to conduct a z-test instead of the t-test in (6).

6 Differential gene expression based on RNA-Seq and Mi-
croarray data

As a demonstration of the practicality, applicability, and power of ep-BH, we seek to detect genes
that are differentially expressed in the striatum of two mice strains (C57BL/6J and DBA/2J). We use
two sources of information: RNA-Seq p-values and microarray e-values.

In more detail, we use the first two experimental batches of the RNA-Seq data collected by Bot-
tomly et al. [2011] which comprise 7 adult male mice of each of the two strains (14 mice in total).
We compute p-values for differential gene expression across the two strains using DESeq2 [Love, Hu-
ber, and Anders, 2014] adjusting for the experimental batches. Furthermore, we use microarray
(Affymetrix) expression measurements collected by Bottomly et al. [2011] for 10 adult male mice (5
of each strain). p-values for such comparisons are routinely computed based on the empirical Bayes
model of Lönnstedt and Speed [2002] with the limma software package [Smyth, 2004], see e.g., the
workflow of Klaus and Reisenauer [2018]. Here we demonstrate how one would proceed if e-values had
been computed instead. In Supplement S7, we provide a construction of e-values under the replicated
microarray model assumptions of Lönnstedt and Speed [2002], Smyth [2004]. The construction may be
of independent interest for applications in high-throughput biology, e.g., for microarray or RNA-Seq
data [Ritchie et al., 2015].

Our analysis leads to RNA-Seq p-values for 24,906 genes (Fig. 2A), and microarray e-values for
a subset of 15,875 genes (Fig. 2B), where we map the microarray probe identifiers to Ensembl gene
identifiers. We set the e-value for the remaining 9,031 genes to 1 (which is a valid e-value). The
p-values are approximately independent of all e-values since Bottomly et al. [2011] used distinct mice
for the RNA-Seq and Affymetrix microarray data collection.

We consider the following variants of weighted p-BH: (i) Unweighted p-BH that only uses the
p-values Pk (and weights wk = 1, thus ignoring the information in the e-values). (ii) E-value weighted
p-BH procedure (ep-BH) with e-values as unnormalized weights wk = Ek. Fig. 2C shows a histogram
of the combined p-values (Pk/Ek) ∧ 1 that are used as input for ep-BH. (iii) Weighted p-BH (wBH)

with normalized e-value weights, i.e., wk = K · Ek/
∑K
`=1E`. (iv) Independent hypothesis weighting

(IHW) BH [Ignatiadis and Huber, 2021, Ignatiadis et al., 2016] with p-values Pk and the e-values
Ek as side-information (see Section 5.2 for a brief description of the method). We use the imple-
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Avg. Weight 90% Weight Discoveries

Non-adaptive
Benjamini-Hochberg (BH, unweighted) 1.00 1.00 1973
E-value Weighted BH (ep-BH, our proposal) 18.11 2.70 2387
Weighted BH (wBH; normalized e-value weights) 1.00 0.15 1310
Indep. Hypothesis Weighted BH (IHW) 1.00 2.11 2016
Fisher BH — — 2354
Single Index Modulated BH (SIM) — — 2282

Adaptive
Storey-BH (unweighted) 1.34 1.34 2147
E-value Weighted Storey-BH (our proposal) 24.35 3.63 2540
Weighted Storey-BH (normalized e-value weights) 2.63 0.39 1536
Indep. Hypothesis Weighted Storey-BH 1.54 3.49 2274
Fisher Storey-BH — — 2556
Single Index Modulated Storey-BH — — 2479

Table 1: Multiple testing for differential gene expression based on RNA-Seq p-values and microarray
e-values: The last column shows the number of discoveries of each method. The first column shows
the weight budget

∑K
k=1 wk/K. For BH-type procedures with normalized weights, this quantity is

always equal to 1. For Storey-type procedures, this budget is inflated due to accounting for the null
proportion. The second column shows the upper 90% quantile among weights wi used by each method.

mentation of independent hypothesis weighting [Ignatiadis and Huber, 2021, “IHW Grenander”] in
the R/Bioconductor package “IHW” that stratifies hypotheses according to the side-information into
bK/1500c groups of equal size.

We also consider two approaches that take two p-values Pk, P
′
k per hypothesis as input (instead of

a p-value and an e-value). Pk is the RNA-Seq p-value as above and P ′k is the p-value returned from
the microarray analysis using limma (Supplement S7). These approaches are the (v) p-BH procedure
applied to the Fisher combination p-values (Fisher), and (vi) single index modulated (SIM) p-BH [Du

and Zhang, 2014], which applies p-BH to Pk(θ̂), where Pk(θ) := Φ{cos(θ)Φ−1(Pk) + sin(θ)Φ−1(P ′k)}
and Φ is the standard normal distribution function. θ̂ is selected as the index θ ∈ [0, π/2] that
maximizes the number of discoveries of p-BH applied to (Pk(θ))k∈K. (Single index modulated p-BH
controls the false discovery rate asymptotically, but there is no finite-sample guarantee due to the
data-driven choice of θ̂.)

We also consider null proportion adaptive versions of the above procedures using variants of
Storey’s adjustment (with τ = 0.5): for the unweighted method, Fisher, and single index modu-
lation we use Storey’s procedure (Storey et al., 2004 and (3)), for e-value weights we use ep-Storey,
for normalized e-value weights we use weighted Storey as described in Ramdas et al. [2019] and for
independent hypothesis weighting we follow Ignatiadis and Huber [2021, Theorem 2]. All procedures
are applied to control the false discovery rate at the target level α = 0.01.

The results of the analysis are shown in Table 1. Among the non-adaptive procedures, ep-BH
makes the most discoveries, even compared to Fisher BH and single index modulated BH which have
access to two independent p-values per hypothesis. The procedure that normalizes the e-value weights
makes by far the least discoveries. The reason is that with the exception of the genes with the highest
e-values, all other genes receive very small weights. Independent hypothesis weighting makes more
discoveries than unweighted BH demonstrating that the ordering of e-values can be used to increase
power, even among procedures that use normalized weights. The findings for the adaptive procedures
are analogous, although in this case, Fisher Storey-BH makes the most discoveries (with a small
margin compared to our ep-Storey method).
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Figure 3: t-test simulations: We compare non-adaptive (BH-based) methods plotting A) false dis-
covery rate (FDR) and B) power against the effect size parameter ξ. All methods control the false
discovery rate except single index modulated BH (SIM) at small ξ. Single index modulated BH is
most powerful, followed by ep-BH, Fisher BH, and independent hypothesis weighting (IHW). We
also evaluate the adaptive (Storey-based) counterparts of the same methods plotting their C) false
discovery rate and D) power, as well the ratio of E) false discovery rate and F) power between the
Storey-based and BH-based methods. Weighted p-BH (wBH) and independent hypothesis weighting
benefit the most from null proportion adaptivity, cf. Remark 4.11.

7 Simulation study

7.1 Evaluation

For the simulation study we compare the same methods as in Section 6. We apply these methods
at a target false discovery rate of α = 0.1. We evaluate methods in terms of their false discovery rate,
and their power, which we define as E{(RD − FD)/(K −K0)}.

7.2 One sample t-test

We conduct a simulation study in the setting of Section 5 and generate data from model (5). We
let n = 10, K = 20, 000, π0 = 0.95 and set µk = ξ for the alternative hypotheses, where the effect size
ξ ∈ [0.5, 1.5] is a varying simulation parameter. We fix σk = 1 for all k. We use the e-values (10) for
ep-BH and weighted p-BH, and the secondary p-values P ′k defined in (ii) of Section 5.3 for Fisher and
single index modulated BH. We average results over 4, 000 Monte Carlo replicates of each simulation
setting.

Among the weighted BH methods, all procedures control the false discovery rate (Fig. 3A), and
ep-BH has the most power (Fig. 3B), followed by independent hypothesis weighting. Weighted p-BH
(with normalized e-value weights) and unweighted p-BH have low power. Single index modulated BH
has the most power, but the difference to ep-BH is small, especially considering the requirement of
an additional p-value (instead of e-value) per hypothesis and that it exceeds the target false discovery
rate at small ξ. The power of ep-BH and Fisher BH is similar. The false discovery rate, resp. power of
the adaptive procedures is shown in Fig. 3C, resp. 3D. Figs. 3E,F show the ratio of the false discovery
rate and power of the adaptive methods compared to their non-adaptive counterparts. As explained
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Figure 4: t-test simulations with heteroscedasticity: Panels A) and B) are analogous to panels A and
B of Fig. 3. We compare non-adaptive methods in terms of their false discovery rate (FDR) and
power. While in Fig. 3, σ2

k = 1 for all k ∈ K, here we enforce increasingly strong heteroscedasticity
by drawing σ2

k ∼ U(1 − τ, 1 + τ), where τ ∈ {0.1, 0.3, 0.5} corresponds to the different facets. Fisher
and single index modulated BH do not control the false discovery rate under strong heteroscedasticity
(τ ∈ {0.3, 0.5}), while the other methods do (cf. Section 5.3). ep-BH has the most power among
methods controlling the false discovery rate.

in Remark 4.11, the procedures with normalized weights derive most benefit from null proportion
adaptivity. ep-BH achieves strong power gains even without null proportion adaptivity.

We next tweak the simulation and introduce heteroscedasticity by drawing σ2
k ∼ U(1 − τ, 1 + τ),

where τ ∈ {0.1, 0.3, 0.5} is a simulation parameter. In Fig. 4 we show results for the non-adaptive
methods only. The weighted BH methods perform similarly as in the homoscedastic case of Fig. 3.
Methods that take two p-values as input (Fisher and single index modulated BH) strongly violate the
target false discovery rate for τ ∈ {0.3, 0.5}. The reason is that the secondary p-value is no longer a
valid p-value when the assumption σ2

k = 1 is violated (cf. Section 5.3).

7.3 Combining RNA-Seq and microarray data

We next consider a simulation that mimics the RNA-Seq/microarray application of Section 6.
We simulate datasets with K = 10, 000 genes of two-sample comparisons with 20 samples for each
combination of condition (control/treatment) and technology (RNA-Seq/microarray). For the syn-
thetic RNA-Seq datasets, inspired by the simulation setup in Love et al. [2014], we generate negative
binomial count data with mean and dispersion parameters chosen to approximate realistic moments
by resampling from the joint distribution of mean/dispersion parameters of the simulations in Love
et al. [2014], truncated to mean values of at least 1. We let π0 = 0.8, and sample the alternative genes
uniformly among all genes and then set the (binary) logarithmic fold changes of the treated samples to
+ξ, resp. −ξ with probability 1/2, where ξ ∈ [0.3, 0.9] is a varying simulation parameter. To generate
synthetic microarray data, we follow the model described in Supplement S7. We first sample variances
σ2
k, k ∈ K from (S16) with ν0 = 3.64 and s20 = 0.0144 (which are the estimates of ν0 and s20 in the

microarray data described in Section 6). We then order the variances according to the order of the
mean counts from the RNA-Seq simulation (i.e., the gene with largest mean count in the RNA-Seq
experiment also has the largest variance in the microarray experiment). For all null genes, the effect
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Figure 5: RNA-Seq and microarray meta-analysis simulation: We compare non-adaptive (BH-based)
methods plotting A) false discovery rate (FDR) and B) power against the effect size ξ and against
the informativeness of the microarray data (parameter πM in the facets). When πM = 1, the mi-
croarray data are fully informative and Fisher BH has the most power followed by ep-BH. weighted
p-BH (wBH) has less power than even unweighted p-BH. When the microarray data are completely
uninformative (πM = 0), then unweighted p-BH, independent hypothesis weighting (IHW), and single
index modulated BH (SIM) have the most power, and Fisher BH has the least power. At intermediate
informativeness (πM = 0.5), weighted p-BH has the least power.

size is βk = 0, while for differentially expressed genes we let βk ∼ (1− πM )δ0 + πMN(0, 0.5σ2
k), where

δ0 is a point mass at 0 and πM ∈ {1, 0.5, 0} is a simulation parameter. In words, when πM = 0,
the microarray dataset is completely uninformative, while when πM = 1 all differentially expressed
genes in the RNA-Seq dataset are also differentially expressed in the microarray dataset. We generate
summary statistics for the 20 vs. 20 comparisons for each gene as in (S15). Finally, we compute
p-values and e-values as in Section 6. Results are averaged over 100 Monte Carlo replicates.

All non-adaptive methods control the false discovery rate (Fig. 5A). When πM = 1, Fisher BH has
the most power (Fig. 5B), followed by ep-BH, single index modulated BH, and independent hypothesis
weighting. ep-BH more than doubles the power compared to unweighted p-BH at the smallest values
of the logarithmic fold change ξ. Weighted p-BH has less power than unweighted p-BH and its false
discovery rate is almost 0. The case πM = 0 is chosen as a challenging setting for ep-BH with
completely uninformative e-values. In this case, ep-BH and weighted p-BH have similar power, which
is only slightly lower than the power of unweighted p-BH, single index modulated BH, and independent
hypothesis weighting. Single index modulated BH, and independent hypothesis weighting essentially
collapse to unweighted p-BH when the second p-value (resp. e-value) is uninformative. Fisher BH has
the lowest power in this case. For the intermediate choice of πM = 0.5, single index modulated BH,
ep-BH, and Fisher BH have the most power. Supplementary Fig. S1 shows the false discovery rate
and power of the adaptive procedures and the overall take-home message remains the same: when
e-values are informative, ep-BH can lead to substantial and practical power gains while maintaining
type-I error guarantees.
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Supplementary material

Supplementary material includes omitted proofs, methodological details (e.g., the first (minimally)
adaptive e-BH procedure, inspired by Solari and Goeman [2017] in Supplement S3.2), and additional
simulation results. All numerical results of this paper are fully third-party reproducible, and we
provide the code on Github: https://github.com/nignatiadis/evalues-as-weights-paper.
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S1 Omitted proofs

S1.1 Proof of Theorem 3.1

Let P be a p-value and E be an e-value. They are assumed independent in (i) and (ii) below.
For a fixed e ∈ [0,∞), we will frequently rely on a specific distribution Fe of e-values given by, for
X ∼ Fe, P(X = e) = 1/e = 1− P(X = 0) if e ≥ 1 and P(X = e) = 1/2 = P(X = 2− e) if e < 1. It is
clear that E(X) = 1.

(i) We have E{h(P )E} ≤ 1 since h(P ) is an e-value independent of E. Hence, Πh is an i-pe/e
combiner. To show its admissibility, suppose for the purpose of contradiction that an i-pe/e
combiner f satisfies f ≥ Πh and f(p, e) > Πh(p, e) for some (p, e) ∈ [0, 1] × R+. Clearly,
e ∈ [0,∞) and p ∈ (0, 1]. Since h is upper semicontinuous and q 7→ f(q, e) is decreasing, there
exists p′ < p such that f(q, e) ≥ f(p, e) > Πh(p′, e) ≥ Πh(q, e) for all q ∈ [p′, p]. Take P ∼ U(0, 1)
and E ∼ Fe. Since E{Πh(P,E)} = 1, f ≥ Πh, and f(q, e) > Πh(q, e) for all q ∈ [p′, p], we have
E{f(P,E)} > E{Πh(P,E)} = 1 which means that f(P,E) is not an e-value, contradicting the
fact that f is an i-pe/e combiner. This contradiction shows that Πh is admissible.

(ii) For α ∈ (0, 1), we have P{Q(P,E) ≤ α} = P(P ≤ αE) = E{P(P ≤ αE|E)} ≤ E(αE) ≤ α.
Therefore, Q is an i-pe/p combiner. To show its admissibility, suppose for the purpose of
contradiction that an i-pe/p combiner f satisfies f ≤ Q and f(p, e) < (p/e) ∧ 1 for some
(p, e) ∈ [0, 1] × R+. Since a 7→ f(p, a) is decreasing, we can assume e ∈ [p,∞) by replacing e
with p if e < p. Take P ∼ U(0, 1). Since q 7→ f(q, e) is increasing, there exists p′ < p such that
f(q, e) ≤ f(p, e) < p′/e for all q ∈ [0, p]. This gives P{f(P, e) ≤ p′/e} ≥ P(P ≤ p) = p. For
α = p′/e ∈ (0, 1), if e ≥ 1, then take E ∼ Fe, so that:

P{f(P,E) ≤ α} = P{f(P, e) ≤ p′/e}e−1 + P{f(P, 0) ≤ α}(1− e−1) ≥ p/e > α.

If e < 1, then take E distributed such that P(E = e) = λ and P{E = (1− λe)/(1− λ)} = 1− λ
with λ ∈ (0, 1) chosen sufficiently small, so that α(1− λe)/(1− λ) < 1. Then:

P{f(P,E) ≤ α} = λP{f(P, e) ≤ p′/e}+ (1− λ)P[f{P, (1− λe)/(1− λ)} ≤ α]

≥ λp+ (1− λ)P{P ≤ α(1− λe)/(1− λ)}
= λp+ (1− λ)α(1− λe)/(1− λ)

= λp+ (1− λe)p′/e
= λ(p− p′) + p′/e > α.

Hence, f(P,E) is not a p-value, and this contradicts the fact that f is an i-pe/p combiner. This
contradiction shows that Q is admissible.

(iii) The weighted average of two arbitrary e-values is an e-value; hence Mλ
h is a pe/e combiner. Its

admissibility follows essentially the same proof as part (i), which we do not repeat.

(iv) Since 1/E is a p-value, the Bonferroni combination of P and 1/E, 2 min(P, 1/E), is a p-value, and
hence B is a pe/p combiner. To show its admissibility, suppose for the purpose of contradiction
that a pe/p combiner f satisfies f ≤ B and f(p, e) < {2(p∧e−1)∧1} for some (p, e) ∈ [0, 1]×R+.
By monotonicity of f , we can increase e to 1/p or decrease p to e−1 ∧ (1/2), and this does not
change the value of {2(p ∧ e−1) ∧ 1}. Hence, we can assume that f(p, 1/p) < 2p for some
p ∈ (0, 1/2] by noting that f(p, 1/p) < 2p automatically holds for p > 1/2 because B ≤ 1.
Since q 7→ f(q, e) is increasing, there exists p′ < p such that f(q, 1/p) ≤ f(p, 1/p) < 2p′ for all
q ∈ [0, p]. Take P ∼ U(0, 1) and define E = (1/p)1(P ∈ [p′, p)) + (1/p′)1(P ∈ [p, p + p′p′/p]).
Then E(E) = (p − p′)/p + p′/p = 1. Next, consider the following three cases: 1) when P ≤ p′,
then f(P,E) ≤ 2p′, 2) when P ∈ [p, p + p′p′/p], then E ≤ 1/p′ and so f(P,E) ≤ 2p′, 3) when
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P ∈ (p′, p), then f(P,E) ≤ f(p, 1/p) ≤ 2p′. Hence f(P,E) ≤ 2p′ on the event {P ≤ p+ p′p′/p},
and so:

P{f(P,E) ≤ 2p′} ≥ P(P ≤ p+ p′p′/p) = p+ p′p′/p = p′(p/p′ + p′/p) > 2p′.

Hence, f(P,E) is not a p-value, and this contradicts the fact that f is a pe/p combiner. This
contradiction shows that B is admissible.

S1.2 Proof of Theorem 4.10

As in the proof of Theorem 4.7 we start by arguing conditionally on (Ek)k∈K. The proof of Ramdas
et al. [2019, Theorem 1a] yields that:

E
{
FD
RD
| (Ek)k∈K

}
≤ α

K

∑
k∈N

EkE
{

1

π̂−k0

| (Ek)k∈K

}
, where π̂−k0 =

1 +
∑
j 6=k 1{Pj>τ}

K(1− τ)
.

By Ramdas et al. [2019, Lemma 3], it follows that E{1/π̂−k0 | (Ek)k∈K} ≤ 1/π0, and hence,

E
(
FD
RD

)
= E

[
E
{
FD
RD
| (Ek)k∈K

}]
≤ α

K
E

(∑
k∈N

Ek
K

K0

)
≤ α,

as claimed.

S1.3 Proof for ep-BH with data-driven weights (Theorem 5.1)

Proof. We now prove the FDR control guarantee for ep-BH with data-driven e-values. We call the
procedure D. Let ĉ :=

∑K
`=1 σ̂

2
` , so that Ek = KS2

k/ĉ.
It will be helpful to note the following standard decomposition:

n∑
j=1

Y 2
kj =

n∑
j=1

(Ykj − µ̂k)2 + nµ̂2
k =⇒ nS2

k = (n− 1)σ̂2
k + nµ̂2

k.

Dividing by σ̂2
k yields that nS2

k/σ̂
2
k = (n− 1) + T 2

k , i.e.,

σ̂2
k =

nS2
k

(n− 1) + T 2
k

.

Let us write ĉ as a function of S2
k, T

2
k , k ∈ K:

ĉ =
1

K

K∑
`=1

nS2
`

(n− 1) + T 2
`

.

Finally, noting that Pk is a strictly decreasing function of T 2
k , we see that

ĉ = h((Pk)k∈K, (S
2
k)k∈K),

where h(·) is a function [0, 1]K×RK>0 → R>0. For fixed (S2
k)k∈K, h(·, (S2

k)k∈K) is increasing in (Pk)k∈K.
By the preceding arguments, we see that in fact we may interpret the whole multiple testing

procedure D as a function of (Pk)k∈K, (S
2
k)k∈K, i.e., D = D((Pk)k∈K, (S

2
k)k∈K). Furthermore, for fixed

(S2
k)k∈K, the number of rejections of D are decreasing in (Pk)k∈K—this follows by standard arguments

for (weighted) p-BH along with the monotonicity established for ĉ.
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Let us also define c∗ :=
∑
`∈N σ

2
` and also c̃ := max{ĉ, (1−δ)c∗}. Furthermore let D′ be the ep-BH

procedure with (approximate) e-values Ẽk = KS2
k/c̃ (instead of KS2

k/ĉ).
1 Notice that D and D′ are

identical on the event Acδ, i.e., on the complement of the event Aδ. Furthermore, D′ and c̃ inherit the
monotonicity properties that we established for D and ĉ above. We argue that it suffices to study D′:

FDRD = E
(
FD
RD

)
= E

{
FD
RD

1(Aδ)

}
+ E

{
FD
RD

1(Acδ)

}
≤ P(Aδ) + E

(
FD′

RD′

)
.

By assumption, it holds that P(Aδ) ≤ η, and so it suffices to bound the second term.
Let us call O = {(S2

k)k∈K, (Pk)k∈K\N }. By (7) and our assumption of joint independence of all
the Ykj , it follows that (Pk)k∈N is distributed as U [0, 1]K0 conditionally on O. For k ∈ N :

E
{
1(Hk rejected)

RD′

}
≤ E

1
(
Pk ≤ αRD′S2

k

c̃

)
RD′

 = E

E
1

(
Pk ≤ αRD′S2

k

c̃

)
RD′

∣∣∣∣∣O



(∗)
≤ E

(
αS2

k

c̃

)
≤ α

(1− δ)c∗
E(S2

k) =
α

(1− δ)
· σ2

k∑
`∈N σ

2
`

.

The crucial argument is (∗). Herein we applied the superuniformy lemma of Ramdas et al. [2019,
Lemma 1(b)] conditionally on O. Summing over all k ∈ N , we conclude.

S1.4 Proof of Proposition 5.2

Proof. The crux of the argument is that the left tail of a gamma random variable is sub-Gaussian.
In particular, let X ∼ Γ(a, b) for a, b > 0 (where a is the shape and b is the scale). Then, e.g.,
by Boucheron et al. [2013, Chapter 2.4]:

E(exp[λ{X − E(X)}]) ≤ exp(λ2ab2/2) for any λ < 0.

Next notice that for any k ∈ K, it holds that σ̂2
k ∼ Γ{(n− 1)/2, 2σ2

k/(n− 1)} and E(σ̂2
k) = σ2

k. Hence,
using independence across k, it follows that:

E

(
exp

[
λ

{
K∑
`=1

(σ̂2
` − σ2

` )

}])
≤ exp

(
λ2

2

2

n− 1

K∑
`=1

σ4
`

)
for any λ < 0.

By a standard Chernoff argument (applied to the left tail), this implies that for any ε > 0:

P

{
K∑
`=1

(σ̂2
` − σ2

` ) < −ε

}
≤ exp

{
− ε

2(n− 1)

4
∑K
`=1 σ

4
`

}
. (S1)

We may upper bound the probability of the “bad event” Aδ as follows:

P(Aδ) = P

{
K∑
`=1

σ̂2
` < (1− δ)

∑
`∈N

σ2
`

}
≤ P

{∑
`∈N

(σ̂2
` − σ2

` ) < −δ
∑
`∈N

σ2
`

}
.

Now let ε = δ
∑
`∈N σ

2
` . Then, so that P(Aδ) < η for η ∈ (0, 1), it suffices to choose ε such that the

right hand side in (S1) (applied only to the nulls) is less than η, i.e., we may choose any

ε ≥ 2

{
log(1/η)

∑
`∈N σ

4
`

n− 1

}1/2

.

1An analogous proof strategy is pursued in Blanchard and Roquain [2008, Lemma 4.3].
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Rearranging in terms of δ, it thus suffices that:

δ ≥ 2

{
log(1/η)

∑
`∈N σ

4
`

n− 1

}1/2/∑
`∈N

σ2
` =: δ(η). (S2)

The specific form of δ(η) announced in the statement of the proposition follows from the requirement
that δ ∈ [0, 1).

Now suppose that σk ∈ [
¯
σ, σ̄] for all k ∈ N . Then:

δ(η) ≤ 2

{
log(1/η)

K0σ̄
4

n− 1

}1/2/
(K0

¯
σ2) = 2

{
log(1/η)

σ̄4

(n− 1)K0
¯
σ4

}1/2

.

Let us also highlight at this point that the above bound does not depend at all on the configuration
of the variances of the alternative hypotheses.

S2 Results for additional multiple testing procedures

S2.1 Definition of additional procedures

Definition S2.1 (p-Holm procedure (Holm, 1979)). For k ∈ K, let P(k) be the k-th order statistic
of the p-values P1, . . . , PK , from the smallest to the largest. The p-Holm procedure rejects the k∗hm
hypotheses with the smallest p-values, where

k∗hm := max

{
k ∈ K : P(j) ≤

α

K − j + 1
for all j = 1, . . . , k

}
,

with the convention max(∅) = 0.

The p-Holm procedure controls the family-wise error rate under arbitrary dependence between
the p-values. The p-Holm procedure may be derived as the closed testing procedure based on the
p-Bonferroni test.

Definition S2.2 (p-Hommel procedure (Hommel, 1988)). For k ∈ K, let P(k) be the k-th order
statistic of the p-values P1, . . . , PK , from the smallest to the largest. The p-Hommel procedure
computes

k∗hl := max

{
k ∈ K : P(K−k+i) >

iα

k
for all i = 1, . . . , k

}
,

with the convention max(∅) = 0. If k∗hl = 0, then the p-Hommel procedure rejects all hypotheses,
otherwise it rejects all hypotheses with Pk ≤ α/k∗hl.

The p-Hommel procedure controls the family-wise error rate when (Pk)k∈K is positive regression
dependent within nulls. Furthermore, the p-Hommel procedure is the exact closed testing procedure
based on the p-Simes test (while p-Hochberg is a shortcut).

S2.2 Results for ep-D procedures

By plugging in the p-Hommel procedure (Definition S2.2) into Definition 4.2 we get the ep-Hommel
procedure. Analogously, by plugging in the p-Holm procedure (Definition S2.1) into Definition 4.2,
we get the ep-Holm procedure.

Suppose the assumptions of Theorem 4.3 hold. Then ep-Holm controls the family-wise error rate
at level α (since p-Holm controls the family-wise error rate under arbitrary p-value dependence).

Suppose the assumptions of Theorem 4.9 hold. Then, the ep-Hommel procedure controls the
family-wise error rate at level α; the proof is entirely analogous to the proof for ep-Hochberg.
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S3 Multiple testing with the i-pe/e combiner Πh

In this supplement we provide further results on multiple testing with e-values and p-values that go
beyond the Q-combiner. Throughout we assume that Assumption 4.1 holds, that is, Pk is independent
of Ek for k ∈ N . Hence, under this assumption we can combine Pk and Ek with the admissible i-pe/e
combiner Πh to get e-values E∗k = h(Pk)Ek.

S3.1 The pe-BH procedure for false discovery rate control

The i-pe/p combiner Πh and the e-BH procedure motivate the following procedure as an alternative
to ep-BH:

Definition S3.1 (p-weighted e-BH procedure (pe-BH)). Choose h ∈ Cp/e. For k ∈ K, compute
E∗k = h(Pk)Ek by applying the i-pe/e merger Πh, and then supply (E∗1 , . . . , E

∗
K) to the e-BH procedure

at level α.

We immediately have the following result:

Theorem S3.2. Suppose that Assumption 4.1 holds. Then, the pe-BH procedure has false discovery
rate at most αK0/K .

Proof. The theorem follows by combining the fact that E∗1 , . . . , E
∗
K are e-values for H1, . . . ,HK due

to Theorem 3.1 and the false discovery rate guarantee αK0/K of the e-BH procedure in Wang and
Ramdas [2022, Theorem 2]. We emphasize that no dependence assumption on either (Pk)k∈K or
(Ek)k∈K is required.

We now contrast the pe-BH procedure to the ep-BH procedure. In the ep-BH procedure, e-values
are used as weights for the p-values. Intuitively, if Ek > 1, then there is some evidence against
Hk being a null, and we have Pk/Ek < Pk (assuming Pk 6= 0); that is, the weight strengthens the
signal of Pk. Conversely, if Ek < 1, then there is no evidence against Hk being a null, and we
have Pk/Ek > Pk. The above interpretation of e-values as weights is quite natural. The situation
for the pe-BH procedure, where p-values are used as weights for the e-values, is somewhat different.
For simplicity, suppose that we use the calibrator h ∈ Cp/e given by h(p) = p−1/2 − 1. It is clear
that h(p) > 1 if and only if p < 1/4. Hence, the signal of the e-value Ek will be strengthened in
case Pk < 1/4. This is not surprising as observing a p-value in (0.25, 1) generally does not indicate
evidence against the null. Other choices of h ∈ Cp/e lead to different thresholds, and this is consistent
with the fact that there is no universal agreement on which moderate values of a p-value should be
considered as carrying some (weak) evidence against the null.

In terms of power, the ep-BH procedure dominates the pe-BH procedure when both are valid
(that is, any hypothesis rejected by pe-BH will also be rejected by ep-BH). To show this, we proceed
as follows: the e-BH procedure with input (e1, . . . , eK) is equivalent to the p-BH procedure with
input (1/e1, . . . , 1/eK). Hence, the pe-BH procedure can be seen as applying the p-BH procedure to
(1/E∗1 , . . . , 1/E

∗
K). If h(p) > 1/p for even a single p ∈ (0, 1), then h is not a p/e calibrator. Indeed,

for P ∼ U(0, 1), by decreasing monotonicity of h, we get E{h(P )} ≥ E{h(P )1(P < p)} > E{1(P <
p)/p} = P(P < p)/p = 1, which contradicts the fact that h(P ) is an e-value. Therefore, p 7→ 1/p is
an upper bound for all p/e calibrators h, and this implies, for each k ∈ K,

1

E∗k
=

1

h(Pk)Ek
≥ Pk
Ek

= P ∗k .

Hence, the pe-BH procedure is dominated by the ep-BH procedure.
On the other hand, the ep-BH procedure requires some dependence assumption, such as positive

regression dependence on a subset (Definition 2.2). By Theorem 4.7, if (Pk)k∈K is positive regression
dependent on a subset, then the ep-BH procedure is valid, and it should be the better choice than
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the pe-BH procedure which is dominated. However, if there is no dependence information of (Pk)k∈K,
then (P ∗k )k∈K is arbitrarily dependent, and one may need to apply the p-BH procedure with the BY
correction in Benjamini and Yekutieli [2001]. In this case, the pe-BH and the ep-BH procedures do
not dominate each other. In particular, one needs to compare the inputs

1

h(Pk)Ek
and

`KPk
Ek

, where `K :=

K∑
k=1

1

k
≈ logK.

This is analogous to the trade-off between the p-BH procedure with BY correction and the e-BH
procedure, where one compares h(Pk) and (`KPk)−1 [Wang and Ramdas, 2022, Section 6.5].

S3.2 A minimally adaptive e-BH procedure

The discussion of the pe-BH procedure (and its comparison to ep-BH) raises the following question:
can we use the i-pe/e combiner Πh within a procedure that controls the false discovery rate and is
null-proportion adaptive (i.e., an analogous procedure to ep-Storey)? The challenge here is that null
proportion adaptive procedures analogous to Storey’s are not known for the e-BH procedure (and
consequently for the pe-BH procedure).

In the remainder of this supplement we describe the first (minimally) adaptive procedure by
proposing a tiny but uniform improvement of the e-BH procedure, inspired by Solari and Goeman
[2017]. We remark that, similarly to the situation of Solari and Goeman [2017], this improvement is
negligible for large values of K and it may only be practically interesting for small K such as K ≤ 10.
We mainly focus on the case without boosting; see Wang and Ramdas [2022] for e-value boosting.

First, choose an e-merging function F : [0,∞]K → [0,∞] in the sense of Vovk and Wang [2021],
i.e., F satisfies that F (E1, . . . , EK) is an e-value for any e-values E1, . . . , EK . By Proposition 3.1 of
Vovk and Wang [2021], the arithmetic average

M : (e1, . . . , eK) 7→ 1

K

K∑
k=1

ek

is the “best” symmetric e-merging function, in the sense that it is uniformly more powerful than any
other symmetric e-merging functions. We allow for a general choice of F other than M as it will be
useful for the discussion later on boosted e-values.

With a chosen e-merging function F and a level α ∈ (0, 1), the improved e-BH procedure, denoted

by DF (α), is designed as follows. We first test the global null
⋂K
k=1Hk via the rejection condition

F (e1, . . . , eK) ≥ 1/α, which has a type-I error of at most α, and if the global null is rejected, we then
apply the e-BH procedure at level α′ = Kα/(K − 1). In other words,

1. if F (e1, . . . , eK) < 1/α, then DF (α) = ∅;

2. if F (e1, . . . , eK) ≥ 1/α, then DF (α) = D(α′) where α′ = Kα/(K − 1) and D(α′) is the e-BH
procedure at level α′.

The next proposition shows that by choosing F = M , the resulting improved BH procedure dominates
the base BH procedure.

Proposition S3.3. The improved e-BH procedure DF (α) applied to arbitrary e-values has false
discovery rate at most α. In case F = M , DM (α) dominates the e-BH procedure D(α), that is,
D(α) ⊆ DM (α).

Proof. The first statement on false discovery rate can be shown in a similar way as Solari and Goeman
[2017]. Let A be the the event that F (e1, . . . , eK) ≥ 1/α, treated as random. If K0 < K, then, by
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using Theorem 5.1 of Wang and Ramdas [2022],

E
{
FDF (α)

RDF (α)

}
= E

{
FD(α′)

RD(α′)
1(A)

}
+ E

[
F∅

R∅
{1− 1(A)}

]
= E

{
FD(α′)

RD(α′)
1(A)

}
≤ E

{
FD(α′)

RD(α′)

}
≤ K0

K
α′ ≤ α.

If K0 = K, then the false discovery rate of DF (α) is at most the probability P(A) of rejecting the
global null via F (e1, . . . , eK) ≥ 1/α. In this case, P(A) ≤ α by Markov’s inequality and the fact that
F is an e-merging function. Hence, in either case, the FDR of DF (α) is at most α.

To show the second statement on dominance, let

S : (e1, . . . , eK) 7→ max
k=1,...,K

ke[k]

K
. (S3)

The function S is an e-merging function and it is dominated by M on [0,∞]K ; see Section 6 of Vovk
and Wang [2021]. Note that by definition, S(e1, . . . , eK) < 1/α implies D(α) = ∅. Therefore, if
M(e1, . . . , eK) < 1/α, then D(α) = ∅ = DM (α). Moreover, since α < α′, we always have D(α) ⊆
D(α′). Hence, D(α) ⊆ DM (α).

Next, we briefly discuss the case of boosted e-values. The arithmetic average of boosted e-values
is not necessarily a valid e-value, so one must be a bit more careful. Nevertheless, it turns out that
we can use the function S in (S3) on the boosted e-values. The new procedure can be described as
the following steps.

1. Boost the raw e-values with level α.

2. If S(e′1, . . . , e
′
K) < 1/α where e′1, . . . , e

′
K are the boosted e-values in step 1, then return ∅.

3. Else: boost the raw e-values with level α′ = Kα/(K − 1).

4. Return the discoveries by applying the base e-BH procedure to the boosted e-values in step 3.

This new procedure dominates the e-BH procedure, and it has FDR at most α. To show these two
statements, it suffices to note that the probability of rejecting the global null test S(e′1, . . . , e

′
K) ≥ 1/α

is at most α since the e-BH procedure has FDR at most α by Theorem 5.1 of Wang and Ramdas
[2022]; the rest of the proof is similar to that of Proposition S3.3.

S4 Using two samples for the one-sided z-test

S4.1 Setup

We first describe the setup in more detail and more generality compared to our treatment in
Section 3.3. Suppose that we have two samples of iid data points, X = (X1, . . . , Xm) and Y =
(Y1, . . . , Yn), both from a distribution P, where m ≥ 0 and n ≥ 1. Here, if m = 0 then X has no data.
We would like to test H0 : P = P against H1 : P = Q where P and Q are distinct distributions. For
illustration, we will focus on the simple case P = N(0, 1) and Q = N(δ, 1) where δ > 0 is known.

For an observation x ∈ R, the likelihood ratio of N(δ, 1) over N(0, 1) is

Lδ(x) :=
exp{−(x− δ)2/2}

exp(−x2/2)
= exp(δx− δ2/2).

The likelihood ratio based on the sample X is the e-value EX for Q given by

EX :=

m∏
i=1

Lδ(Xi) = exp

(
δ

m∑
i=1

Xi −
mδ2

2

)
,
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which has a log-normal distribution under P with parameters (µ, σ2) = (−mδ2/2,mδ2). Our conven-
tion is EX = 1 if m = 0. In particular, the transformed log-likelihood statistic TX defined by

TX :=
1

δ
√
m

(
logEX +

mδ2

2

)
=

1√
m

m∑
i=1

Xi

has a standard normal distribution under P . Based on the statistic TX , we can compute the likelihood
ratio p-value

PX := 1− Φ(TX),

where Φ is the standard normal distribution function. Quantities like PY and EY are defined similarly
with (X1, . . . , Xm) replaced by (Y1, . . . , Yn).

We consider three possible approaches to test the hypothesis using the two samples.

(a) Combine two samples, that is, use Z = (X,Y ) and then compute the p-value PLR := 1−Φ(TZ)
based on the likelihood ratio of Z, where

TZ :=
1√

m+ n

(
m∑
i=1

Xi +
n∑
i=1

Yi

)
.

(b) Compute an e-value EX from X and a p-value PY from Y , and use the Q-combiner to compute
a p-value PE := Q(PY , EX) = (PY /EX) ∧ 1.2

(c) Compute a p-value PX from X and another p-value PY from Y , and use the Fisher statistic
−2 log(PY PX). The Fisher p-value is PF := 1−χ4(−2 log(PY PX)), where χ4 is the the chi-square
distribution with 4 degrees of freedom.

Among the three methods, our intuition is that PLR should be the most powerful since it uses the
full likelihood ratio of the sample. The other two methods, by combining two p-values or a p-value
and an e-value, should lose some power.

S4.2 Pitman’s asymptotic relative efficiency

We study Pitman’s asymptotic relative efficiency (ARE; see Van der Vaart, 1998, Section 14.3)
between the full likelihood ratio method and the P/E method. Note that if n = 0 then both methods
are equivalent. We will consider that m,n→∞ and m = θ2n with the signal ratio θ ≥ 0 fixed. (More
precisely, one can use m = bθ2nc which does not make a difference to the asymptotic analysis.)

Fix two levels α and β such that 1 > β > α > 0. Let P be the probability that generates the data
from the alternative hypothesis, and Z ′ be a standard normal random variable under P independent
of X. Define NLR the number of sample points needed for a level-α test to reach power β > α under
the alternative; that is, NLR is the smallest number n ∈ N such that

P(PLR ≤ α) ≥ β; and equivalently, P
{
Z ′ + δ

√
nθ2 + n ≥ Φ−1(1− α)

}
≥ β. (S4)

Similarly, NE is the smallest n ∈ N such that

P(PE ≤ α) ≥ β; and equivalently, P
[
Z ′ + δ

√
n ≥ Φ−1{(1− αEX)+}

]
≥ β. (S5)

Pitman’s asymptotic relative efficiency between PLR and PE is defined as

AREθ(α, β) := lim
δ↓0

NLR

NE
,

where we emphasize its reliance on θ. The asymptotic relative efficiency intuitively means the ratio
of the needed sample size for PLR to that for PE when the signal is very small.

2In what follows we slightly abuse notation and often ignore the truncation of PY /EX to 1. This does not make any
difference with respect to the rejection of the null hypothesis.
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Proposition S4.1. For 1 > β > α > 0 and θ ≥ 0, we have

AREθ(α, β) =
z2

k2
, (S6)

where k > 0 is the smallest solution to∫ ∞
−∞

Φ
(
Φ−1

[
{1− α exp(k2θ2/2 + kθw)}+

]
− k
)

dΦ(w) = 1− β, (S7)

and z > 0 is given by

z =
Φ−1(1− α)− Φ−1(1− β)√

1 + θ2
. (S8)

In particular, ARE0(α, β) = 1. Moreover, for fixed β ∈ (0, 1) and θ ≥ 0, we have

lim
α↓0

AREθ(α, β) = 1. (S9)

Proof. First, let β and α be fixed with 1 > β > α > 0. It is easy to see that both NLR and NE tend
to infinity as δ ↓ 0. In this part of the proof, all convergence and asymptotic equivalence statements
are with respect to δ ↓ 0.

The case of NLR is easy to compute. By (S4), we have

NLRδ
2

z2
→ 1 as δ ↓ 0, (S10)

where z is in (S8).
Next, we analyze NE. Let Wi = Xi − δ for i ∈ N which is standard normally distributed under Q.

Write EX(m) as EX with sample size m. Note that

logEX(m) = δ

m∑
i=1

Wi +
mδ2

2
,

and therefore,

logEX(θ2n)− nθ2δ2

2
= δ

θ2n∑
i=1

Wi ∼ N(0, nθ2δ2). (S11)

Let W be a standard normal random variable independent of Z ′. We have logEX(θ2n) is identically
distributed as δθ

√
nW +nθ2δ2/2. Using (S11) and (S5), NE ∼ k2/δ2 where k > 0 is the smallest such

that
P
(
Z ′ + k ≥ Φ−1

[
{1− α exp(k2θ2/2 + kθW )}+

] )
= β.

By independence of Z ′ and W ,

E
{

Φ
(
Φ−1

[
{1− α exp(k2θ2/2 + kθW )}+

]
− k
)}

= 1− β.

Equivalently, k is the smallest such that∫ ∞
−∞

Φ
(
Φ−1

[
{1− α exp(k2θ2/2 + kθw)}+

]
− k
) 1√

2π
e−w

2/2 dw = 1− β. (S12)

The equation (S12) is precisely (S7). UsingNE ∼ k2/δ2 andNLR ∼ z2/δ2, we get AREθ(α, β) ∼ z2/k2.
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Next, we prove (S9). In what follows, all convergence and asymptotic equivalence statements are
with respect to α ↓ 0. We know that k →∞ since k ≥ z and z →∞ as α ↓ 0. For (S12) to hold, the
term

f(α) := Φ−1
[
{1− α exp(k2θ2/2 + kθw)}+

]
− k

needs to be of the order O(1) for some w ∈ R. We claim that for this to happen, we need

Rα :=
k2(1 + θ2)

−2 logα
→ 1, as α ↓ 0.

Note that

f(α) = Φ−1
[
{1− α1−Rαθ2/(1+θ2)ekθw}+

]
− k. (S13)

Using the approximation Φ−1(1 − ε)/
√
−2 log ε → 1 as ε ↓ 0 (see Example 8.13 of DasGupta, 2008),

we have

Φ−1
[
{1− α1−Rαθ2/(1+θ2)ekθw}+

]
∼
√
−2 [{1−Rαθ2/(1 + θ2)} logα+ kθw],

and by definition

k =

√
Rα(−2 logα)

1 + θ2
.

Putting the above two equations together, we get

Φ−1
[
{1− α1−Rαθ2/(1+θ2)ekθw}+

]
k

∼

√
−2 [{1−Rαθ2/(1 + θ2)} logα] (1 + θ2)

Rα(−2 logα)
− 2θw

k

∼

√
1 + θ2 −Rαθ2

Rα
,

and the above term is asymptotically equivalent to 1 if and only if Rα → 1. Since k → ∞, if the
above ratio is not 1 then f(α) tends to∞ or −∞ for every w, violating (S12). From this, we conclude
that Rα → 1, and hence, k2 ∼ −2 logα/(1 + θ2). Using the approximation Φ−1(1− ε)/

√
−2 log ε→ 1

again and (S8), we have z2 ∼ −2 logα/(1 + θ2). Therefore, we obtain (S9).

In Table S1 we report numerical values for AREθ(α, β) for some choices of θ ∈ [0, 1] and α, β. For
instance, for θ = 1 and (α, β) = (0.05, 0.9), by using the P/E method compared to the full likelihood
ratio, one at most loses 1 data point in every 8 data points. This remains true (as a conservative
statement) for any value of θ ∈ [0, 1], since AREθ(α, β) ≥ ARE1(α, β) for θ ∈ [0, 1]. If X has less
signal than Y , then the ARE is even closer to 1. For instance, with the same (α, β) = (0.05, 0.9),
ARE0.5(0.05, 0.9) = 0.956, meaning that one loses 1 data point in every 23 data points.

S5 Extensions to the setting of Section 5

S5.1 Simultaneous two-sample t-tests

In place of (5) , consider a two-sample situation in which we observe (independent) Ykj , Vkj for
k = 1, . . . ,K and j = 1, . . . , n, drawn as follows:3

Ykj ∼ N(µY,k, σ
2
k), Vkj ∼ N(µV,k, σ

2
k), µY,k, µV,k ∈ R, σk > 0, (S14)

3The assumption that the we observe the same number of observations, n, for each sample, is merely for notational
convenience.
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(α, β) (0.05, 0.5) (0.01, 0.5) (0.05, 0.9) (0.01, 0.9)
ARE1(α, β) 0.956 0.974 0.874 0.914

ARE0.5(α, β) 0.989 0.995 0.956 0.970

Table S1: Asymptotic relative efficiency: We numerically compute the values of Pitman’s asymptotic
relative efficiency (following Proposition S4.1) between the full likelihood ratio method and the P/E
method for different choices of the size α, power β, and signal ratio θ. For instance, with θ = 0.5, and
(α, β) = (0.05, 0.9), ARE0.5(0.05, 0.9) = 0.956, meaning that one loses 1 data point in every 23 data
points. We observe that the asymptotic relative efficiency is quite close to 1 and increases as α and θ
decrease.

We seek to test Hk : µY,k = µV,k. Let us compute the following,

µ̂Y,k :=
1

n

n∑
j=1

Ykj , µ̂V,k :=
1

n

n∑
j=1

Vkj ,

σ̂2
Y,k :=

1

n− 1

n∑
j=1

(Ykj − µ̂Y,k)2, σ̂2
V,k :=

1

n− 1

n∑
j=1

(Vkj − µ̂V,k)2,

Tk :=

√
n(µ̂Y,k − µ̂V,k)√
σ̂2
Y,k + σ̂2

V,k

, Pk := 2{1− Ft,2n−2(|Tk|)},

where Ft,2n−2 is the cumulative distribution function of a random variable following the t-distribution
with 2n− 2 degrees of freedom. This is the p-value of the standard equal variance two-sample t-test.
Finally, let:

µ̂k :=
1

2
(µ̂Y,k + µ̂V,k), S2

k :=
1

2n− 1

n∑
j=1

{(Ykj − µ̂k)2 + (Vkj − µ̂k)2}.

Notice that µ̂k and S2
k are the sample mean and sample variance after pooling all observations

Yk,1, . . . , Yk,n, Vk,1, . . . , Vk,n and ignoring their group assignment.
In analogy to (7) in the manuscript, we can then show that under the null (i.e., when µY,k = µV,k),

then Pk and S2
k are independent. For further context and references, see, e.g., Ignatiadis and Huber

[2021, Supplement S6.2.2].
The subsequent argumentation and methodological development could proceed analogously to the

one-sample t-test problem that we study in the main text. We focus on the one-sample t-test instead
of the two-sample t-test for the sake of simplicity, and notational compactness.

S5.2 Further extensions

Analogous constructions that lead to an independence statement under the null of the form (7) are
available beyond the Gaussian models (5) and (S14). For example, suppose that for the k-th hypothesis
we observe two samples, Yk1, . . . , Ykn, and Vk1, . . . , Vkn. We seek to conduct a nonparametric two-
sample test. If {Yk1, . . . , Ykn, Vk1, . . . , Vkn} are assumed to be exchangeable for k ∈ N , then any
permutation-invariant statistic is independent of the Wilcoxon rank sum statistic. See Bourgon et al.
[2010] for further details.
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S6 More general weighting functions in the setting of Sec-
tion 5

Recall that our goal is to construct ψ(·) with the following two properties: it leads to more powerful
e-values compared to ψ(s2) = s2, and second, a data-driven scaling analogous to (9) is practical and
stable.

Our starting point is the likelihood ratio Lk of nS2
k under the noncentral chi-square distribution

with n degrees of freedom and noncentrality parameter (ncp) λ and under the (central) chi-square
distribution with n degrees of freedom.4 We have the following expansion of Lk in terms of powers of
S2
k:

Lk =

∞∑
d=0

exp(−λ/2)λdΓ(n/2)

4dd!Γ(n/2 + d)
(nS2

k)d.

Our proposal is to fix D ∈ N and to truncate the above power series to the first D + 1 terms, i.e.,

ψ(S2
k) ≡ LDk :=

D∑
d=0

exp(−λ/2)λdΓ(n/2)

4dd!Γ(n/2 + d)
(nS2

k)d.

In our implementation, we take D = 6 and λ = n. Furthermore, let

L̃Dk :=

D∑
d=0

exp(−λ/2)λdΓ{(n− 1)/2}
4dd!Γ{(n− 1)/2 + d}

{(n− 1)σ̂2
k}d.

We may verify that for k ∈ N , E(L̃Dk ) = E(LDk ). Hence this motivates the following choice of e-value
rescaling analogous to (9):

Ek := KLDk

/ K∑
`=1

L̃Dk .

This is precisely (10).
The conclusions of Theorem 5.1 hold verbatim after replacing the event Aδ by the event:

Aδ :=

{
K∑
k=1

L̃k < (1− δ)
∑
k∈N

E(L̃k)

}
.

S7 E-values for replicated microarray data

We first provide a quick summary of the distributional assumptions and p-value constructions
in Lönnstedt and Speed [2002] and Smyth [2004] and then derive analogous e-values. The starting
point is that we seek to test K hypotheses Hk : βk = 0 wherein for the k-th hypothesis we have
summarized our data as β̂k, S

2
k, where

β̂k | βk, σ2
k ∼ N(βk, vkσ

2
k), S2

k | σ2
k ∼

σ2
k

νk
χ2
νk
. (S15)

Above, vk and νk are known fixed numbers and χ2
νk

is the chi-square distribution with νk degrees of
freedom. To be concrete, in case we conduct an equal variance two-sample t-test for each gene based
on nCk control samples and nTk treated samples, then under standard normality assumptions we may
take vk = (1/nCk + 1/nTk ) and νk = nTk + nCk − 2 in (S15).

4In fact, this likelihood ratio was the e-value we used in the simulation study of an earlier working paper of this
work. The disadvantage of Lk is that it is unclear how to scale it as in (9) when σ2

k > 0 is unknown.
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To share information across genes, Lönnstedt and Speed [2002], Smyth [2004] further posit the
following distributional assumption on the residual variances σ2

k:

1

σ2
k

∼ 1

ν0s20
χ2
ν0 , (S16)

where s20, ν0 are fixed numbers that determine the location and concentration of the distribution of
the σ2

k. Under (S15) and (S16), it also follows that,

T̃k | βk = 0 ∼ tν0+νk , where T̃k :=
β̂k

S̃k
√
vk
, S̃2

k :=
ν0s

2
0 + νkS

2
k

ν0 + νk
, (S17)

where tν0+νk is the t-distribution with ν0+νk degrees of freedom with cumulative distribution function

Ft,ν0+νk . Hence, Pk = 2{1−Ft,ν0+νk(|T̃k|)} is a p-value for the null hypothesisHk : βk = 0. The upshot

of positing (S16) is that we may studentize β̂k with sample variances that are shrunk toward s20, and
increase the degrees of freedom of the t-statistic from νk to ν0+νk.5 Model (S16) and the computation
of the p-values entails knowledge of the two unknown parameters s20, ν0. The predominant approach
in practice, as advocated by Smyth [2004], is to plug-in parametric empirical Bayes estimates ν̂0 and
ŝ20 of these parameters (based on the data for all genes, k = 1, . . . ,K).

Taking inspiration from the above p-value construction, we propose the following e-value.

Proposition S7.1. Suppose (S15) and (S16) hold. Then, for any γ > 0,

Ek :=
1√

γk + 1

{
1− γkT̃

2
k

(1 + γk)(νk + ν0 + T̃ 2
k )

}− ν0+νk+1

2

, γk = γ/vk, (S18)

is an e-value for Hk : βk = 0, in particular, E(Ek | βk = 0) = 1.

Proof. Let pk,0(·) be the (marginal) density of the moderated t-statistic T̃k (S17) under (S15), (S16),

and βk = 0. For γ > 0, let pk,γ(·) be the (marginal) density of the moderated t-statistic T̃k when
βk | σ2

k ∼ N(0, γσ2
k) and (S15), (S16) hold. Then Ek in (S18) is equal to the likelihood ratio

pk,γ(T̃k)/pk,0(T̃k). Hence:

E(Ek | βk = 0) =

∫
{pk,γ(t)/pk,0(t)}pk,0(t)dt =

∫
pk,γ(t)dt = 1.

The e-value construction above requires a choice of a tuning parameter γ > 0. The proof above
hints at a way of choosing γ in a data-driven way. We make the additional working model assumption:

βk | σ2
k ∼ π̃0δ0 + (1− π̃0)N(0, γσ2

k), π̃0 = 1/2, (S19)

where δ0 is a point mass at 0. We then estimate γ by empirical Bayes as described in Smyth [2004,
Section 6.3] by positing that (S19) holds for all genes k = 1 . . . ,K in addition to (S15) and (S16).
Analogously to the computation of p-values in limma [Smyth, 2004], we ignore uncertainty introduced
due to the estimation of γ.

The choice π̃0 = 1/2 in (S19) is a conservative choice. If we were to further increase the proportion
assigned to the null component (π̃0), then the estimated γ would typically be larger, and this would
lead to more extreme e-values. Instead, we make the safe choice π̃0 = 1/2 in anticipation of the

5One may wonder if the additional assumption (S16) is justified. For microarray data and RNA-Seq data analyzed
via limma [Ritchie et al., 2015], (S16) often provides an adequate fit with respect to downstream inferences [Lu and
Stephens, 2016]. Lu and Stephens [2016] and Ignatiadis and Sen [2023] replace (S16) by a nonparametric generalization.
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downstream task of combining e-values with p-values. In particular, we emphasize, that inferences
will be valid even if the true null proportion π0 is different than our posited π̃0.

The e-value Ek has the following elegant interpretation for π̃0 = 1/2: it is equal to the posterior
odds statistic proposed by Lönnstedt and Speed [2002, Equation 3]. The posterior odds statistic relies
on the validity of (S19), and this led Lönnstedt and Speed [2002] to write that “we cannot rely on
any standard cutoff value [...] for the selection of differentially expressed genes.” However, since
the posterior odds statistic is an e-value, we no longer need to rely on (S19) (it is merely a working
assumption), and we can rigorously proceed with the multiple testing task.

S8 Additional simulation figures
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Figure S1: RNA-Seq and microarray meta-analysis simulation with null-proportion adaptive methods:
This figure is analogous to Fig. 5 with the difference that we compare null-proportion adaptive variants
of the same methods. We plot A) the false discovery rate (FDR) and B) power against the effect size
parameter ξ and against the informativeness of the microarray data (parameter πM in the facets).
We note that in this case there is slight exceedance of FDR control for several methods (including
unweighted p-BH) at small values of ξ (which is also slightly visible—but less so—in Fig. 5). The reason
may be that DESeq2 [Love et al., 2014] p-values are computed based on asymptotic approximations,
and so may not be exactly super-uniform in finite samples. The remaining takeaways are similar to
those of Fig. 5: Fisher Storey-BH has the most power when microarray data are fully informative
(πM = 1), but has the least power when the microarray data are fully uninformative (πM = 0).
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